

100 TradCenter, Suite G700 Woburn, MA 01801 Tel: (781) 933-3711 Fax: (781) 287-1277 Email:lep@lindeneng.com

STORMWATER REPORT

TOWN OF LYNNFIELD. MA KING RAIL RESERVE GOLF COURSE CLUBHOUSE 397 WALNUT STREET aka 1 KING RAIL DRIVE LYNNFIELD, MA August 31, 2023

Owner and Applicant: Town of Lynnfield, MA c/o Ms. Lisa DeMeo, P.E., Town Engineer Town Hall, 55 Summer Street Lynnfield, MA 01940

Prepared by: LINDEN ENGINEERING PARTNERS, LLC 18 Henderson Road Woburn, MA 01801

STORMWATER REPORT Proposed Redevelopment of Building 1 IQHQ-1 Corporate, LLC and IQHQ-4 Corporate, LLC 1 Corporate Drive, Andover, MA

TABLE OF CONTENTS

Summary	3
Site Description	3
Existing Conditions	4
Proposed Conditions	4
Standard 1: No New Untreated Discharges	4
Standard 2: Peak Rate Attenuation	4
Standard 3: Recharge	6
Standard 4: Water Quality	7
Standard 5: Land Uses With Higher Potential Pollutant Loads (LUHPPLs)	9
Standard 6: Critical Areas	9
Standard 7: Redevelopments and Other Projects Subject to the Standards	
only to the maximum extent practicable	9
Standard 8: Construction Period Pollution Prevention and	
Erosion and Sedimentation Control 1	
Standard 9: Operation and Maintenance Plan 1	
Standard 10: Prohibition of Illicit Discharges 2	23
Attachments:	
Locus Map	
Existing Conditions Runoff Calculations (2, 10. 25 and 100 Year Storms)	
Proposed (Site Developed) Calculations (2, 10. 25 And 100 Year Storms) Madep Madep	ρ
Checklist For Stormwater Report	
Manufacturer's Performance Data For Contech Cascade Unit	

Summary:

The proposed project falls under the provisions of the Stormwater Regulations under the Massachusetts Wetlands Protection Act. The project is considered a mix of New Development and Redevelopment under those regulations and full compliance with those regulations is not required.

The proposed stormwater system for the project has been designed so that with the exception of a portion of the outdoor patio and a very small portion of the paved cart path, all of the stormwater from the project within the limit of work will be fully treated in accordance with the regulations. The proposed system provides treatment for TSS and Total Phosphorous by infiltrating 1" of runoff into the ground. This is accomplished by constructing two infiltration basins and one subsurface infiltration structure.

The net effect of the proposed stormwater measures is that the peak runoff from the project area is controlled and does not exceed the existing peak runoff, similarly the volume of the runoff from the project area is controlled and does not exceed the existing runoff volume. The Total Suspended Solids and Total Phosphorus reduction requirements of the regulations are also met by the proposed system.

This report details the existing and proposed hydrological and hydraulic conditions for the Redevelopment of a portion of the King Rail Reserve Golf Course in Lynnfield, MA. This report has been prepared in conformance with the requirements of the Massachusetts Department of Environmental Protection (MADEP) 2008 Stormwater Handbook and the 2008 amendments to 310 CMR 10.00 et. seq. (Massachusetts Wetlands Act Regulations (MAWPA Regs)) and the Town of Lynnfield Stormwater Bylaw. The report has been organized to follow the MADEP Stormwater Checklist.

Site Description:

The project which is the subject of this report is located at 397 Walnut Street aka 1 King Rail Drive on the western side of Walnut Street in Lynnfield, MA. The portion of the property which is the subject of this application is a portion of the larger 1037 acre site. The property is shown on the Town of Lynnfield Assessor's Map 45 as Lot 999. The property is owned by the Town of Lynnfield,

Existing Conditions:

The portion of the site which is the subject of the proposed work is located at the southern end of the property. The area is presently improved for an existing gravel parking area and driveway along with paved and gravel paths/ Portions of the area are grassed and minor portions are wooded. Drainage from the project area either flows overland to the existing drainage basin on the Market Street property or overland to Reedy Meadow.

Proposed Conditions:

The redevelopment of the site consists of the paving of the entrance drive, the regrading of the existing gravel parking area and paving some minor portions of the lot, construction of a new gravel golf cart storage area and construction of a new clubhouse building with associated site improvements and utilities.

A small portion of the drainage from the project area will continue to flow overland to the basin on the Market Street property and overland and piped to Reedy Meadow. The proposed project includes the construction of two new surface infiltration basins and one new subsurface infiltration structure.

Stormwater Standard 1: No New Untreated Discharges

The proposed project does not include any new untreated discharges. In addition, all of the runoff from the redeveloped site will be treated with deep sump catch basins, surface and subsurface infiltration systems and stormwater treatment units and the peak rates of runoff and runoff volume from the project area will be reduced when compared to the existing conditions.

Standard 1 has been fully met by the proposed project.

Stormwater Standard 2: Peak Rate Attenuation

The proposed project involves the redevelopment of an existing developed site. As such, compliance with Stormwater Standard 2 is required only to the maximum extent practicable and measures must be taken to improve existing conditions.

As part of this study our firm prepared existing and proposed runoff calculations for the project for the 2, 10, 25 and 100 year storms. We have attached to this

August 31, 2023 Page 4 of 23

report the full printout for the 100 year storm and reduced printouts for the 2, 10, and 25year storms from our HydroCAD Model for the project. All of the stormwater modeling calculations were prepared using SCS Methods consistent with the requirements of the Regulations. The calculations were prepared using HydroCAD software, Version 10.00 by Applied Microcomputers Systems.

Soils data for the stormwater study was obtained from the previous applications for the site and particularly the on-site soil testing conducted for those applications which indicate that the soils are SCS Hydrologic Soils Group B.

Ground cover data is based on the existing and proposed site conditions using on the ground survey and observations of the site. Times of concentration are based on the tributary watershed characteristics and SCS Methodology with a minimum time of concentration of 6 minutes as prescribed by the methodology. Rainfall data for the study is based on U.S. Weather Bureau Technical Paper #40.

Stormwater mitigation for the proposed project is provided by the installation of two new surface infiltration basins and one new subsurface infiltration structure. These structures will infiltrate the required portion of the runoff and the additional volume will allow mitigation of the peak runoff from the redeveloped site. Our calculations did not include any exfiltration from these systems (a conservative approach).

PEAK RUNOFF TO REEDY MEADOW								
Storm Return	Existing Peak	Existing Peak Proposed (Site Difference						
Period (years)	Rate of Runoff	Developed) Peak	c.f.s. (%)					
	(c.f.s.)	Rate of Runoff						
		(c.f.s.)						
2	2.57	1.56	-1.01 (-39.2%)					
10	4.85	4.48	-0.38 (-7.8%)					
25	6.47	6.07	-0.40 (-6.1%)					
100	8.48	7.91	-0.57 (-6.7%)					

A summary of the peak rate of runoff calculations from the project area to Reedy Meadow is as follows:

A summary of the runoff volume calculations from the project area to Reedy Meadow is as follows:

PEAK RUNOFF TO REEDY MEADOW								
Storm Return	Existing Runoff	Existing Runoff Proposed (Site Difference						
Period (years)	Volume	Developed) Runoff	Acre feet (%)					
	(acre feet)	Volume						
		(acre feet)						
2	0.254	0.204	-0.050 (-19.6%)					
10	0.491	0.448	-0.043 (-8.7%)					
25	0.658	0.619	-0.039 (-5.9%)					
100	0.866	0.831	-0.035 (-4.0%)					

A review of the above summaries indicates that the redevelopment of the site as proposed will not increase the peak rate of runoff or runoff volume from the site to Reedy Meadow. Note that in the above calculations the gravel golf cart storage area and gravel parking area and paths were considered as impervious.

Based on the results of the calculations Standard 2 has been met by the proposed project.

Stormwater Standard 3: Recharge

The proposed project involves a mix of new development and redevelopment. As such, compliance with Stormwater Standard 3 is required only to the maximum extent practicable and measures must be taken to improve existing conditions. Test pits previously conducted at the site by others indicate the soils to be Hydrologic Soils Group B with a recharge rate of 2.41 inches/hour.

Given that the soils in the work area are HSG B the required infiltration is 0.35 inches x the impervious area. Since the subsurface infiltration structures have been designed to infiltrate 1.0 inches of water based on the proposed impervious area as detailed under Standard 4 below, these systems exceed the recharge requirement of the standards. All of the systems have been located a minimum of 2 feet above the ESHGWT.

Based on the fact that the infiltrated volume exceeds the required infiltration volume, Standard 3 has been fully met by the proposed project.

August 31, 2023 Page 6 of 23

STORMWATER REPORT KING RAIL RESERVE GOLF COURSE CLUBHOUSE 397 WALNUT STREET aka 1 KING RAIL DRIVE LYNNFIELD, MA Stormwater Standard 4: Water Quality

The proposed project involves ta mix of new development and redevelopment. As such, compliance with Stormwater Standard 4 is required only to the maximum extent practicable and measures must be taken to improve existing conditions. Treatment for the runoff from the impervious surfaces is provided by a sediment forebay and a Surface Infiltration Basin, a second Surface Infiltration Basin and new deep sump catch basins with hooded outlets, a Cascade Stormwater Treatment Unit along with a Surface Infiltration Structure.

Calculations for these systems are as follows:

Infiltration Basin #1:

Tributary Impervious Area On Site = 3,025 s.f.Water Quality Volume = $3,025 \text{ s.f. } \times 1.0^{\circ}/12^{\circ}/\text{ft.} = 252.08 \text{ c.f.}$ Captured Volume at the Overflow Depth = 570 c.f. which is > 252.08 c.f. Time to Empty = 0.5 ft. deep x 12 in./ft./2.41 in./hr. = 2.5 hrs. < 72 hrs

Infiltration Basin #2:

Tributary Impervious Area = 2,360 s.f. Water Quality Volume = 2,360 s.f. x 1.0" = 196.7 c.f. Captured Volume at the Overflow Depth = 417 c.f. which is > 196.7 c.f. Time to Empty = 1.5 ft. deep x 12 in./ft/2.41 in./hr. = 7.5 hrs. < 72 hrs

Subsurface Infiltration Structure #1:

Tributary Impervious Area = 25,150 s.f.Water Quality Volume = 25,150 s.f. x 1.0" = 2,096 c.f.Captured Volume at the Overflow Depth = 2,110 c.f. which is > 2,096 c.f.Time to Empty = 1.8 ft. deep x 12 in./ft./2.41 in./hr. = <math>9.0 hrs. < 72 hrs

Note that in the above calculations the gravel golf cart storage area and gravel parking area and paths were considered as impervious.

TSS and Phosphorous Removal

Runoff from the proposed gravel and impervious surfaces is being treated by a Surface Infiltration Basin, a second Surface Infiltration Basin and new deep sump catch basins with hooded outlets, a Cascade Stormwater Treatment Unit along

with a Surface Infiltration Structure. Total Suspended Solids (TSS) calculations are as follows:

Infiltration Basin #1:

• Infiltration basin which captures the WQV (1") with pretreatment (sediment forebay) removes 80% of the TSS.

Infiltration Basin #2:

 Infiltration basin which captures the WQV (1") removes 80% of the TSS. Note that pretreatment is not required for roof runoff which is considered clean.

Subsurface Infiltration Structure #1:

- Pretreatment is provided by deep sump catch basins.
- The Cascade Stormwater Treatment Unit removes 80% of the TSS leaving a residual load of 20%.
- The Subsurface Infiltration Structure which captures the WQV (1") removed 80% of the residual load (20%) for a remaining load of 4% or an aggregate removal of 96%.

There is a deminimus impervious area of 600 s.f. which flows overland for more than 75 feet and qualifies for a LID credit.

The aggregate TSS removal for the project is as follows:

(5385 s.f. x 80% + 25150 s.f. x 96% + 600 s.f. x 0%)/31125 s.f. = 91.3% TSSRemoval. This aggregate 91.3% removal of TSS exceeds the 80% requirement for redevelopment and 90% for new development.

Calculations for the Cascade Stormwater Treatment Unit is as follows:

Unit #1: Impervious Area = 25,150 s.f. (0.57736 acres), time of concentration = 0.10 hours WQF = (qu)(A)(WQV)WQF = (774 csm/in)(0.57736 acres)(0.0015625 mi2/acre)(1 in)WQF $\approx 0.698 \text{ CFS}$ Note: The chosen Unit can treat 1.48 c.f.s.

> August 31, 2023 Page 8 of 23

Total Phosphorous removal is provided by infiltration of stormwater into the ground. Information from the EPA Pollutant Removal Tool and the Massachusetts MS4 General Permit (appendix f, attachment 3, page 51) states that for HSG B soil with an infiltration rate of 2.41 inches/hour, retaining 1 inch of runoff results in the removal of 98% of the Total Phosphorous load which exceeds the 50% requirement for redevelopment and 60% for new development.

The runoff quality from the proposed project represents a significant improvement compared to existing conditions. Therefore, in our opinion, Standard 4 has been fully met by the proposed project.

Stormwater Standard 5: Land Uses with Higher Potential Pollutant Loads (LUHPPLs)

The project does not contain any activities that are classified as Land Uses with Higher Potential Pollutant Loads as defined by the 2008 MADEP Stormwater Handbook and the 2008 amendments to 310 CMR 10.00 et. seq. (MAWPA Regs). Therefore Standard 5 has been met by the proposed project to the extent practicable.

Stormwater Standard 6: Critical Areas

The proposed project does discharge stormwater runoff to a critical area as defined by the 2008 MADEP Stormwater Handbook and the 2008 amendments to 310 CMR 10.00 et. seq. (MAWPA Regs). The project uses stormwater management strategies recommended for such areas.

Therefore Standard 6 has been fully met by the proposed project.

Stormwater Standard 7: Redevelopments and Other Projects Subject to the Standards only to the maximum extent practicable

The proposed project involves a mix of redevelopment and new development. As such, compliance with Stormwater Standards 2, 3, 4, 5, and 6 is required only to the maximum extent practicable and measures must be taken to improve existing conditions. Throughout this report we have listed the areas of compliance with the standards in the 2008 MADEP Stormwater Handbook. The proposed project has been carefully thought through and designed to meet the requirements of stormwater standards 1, 2, 3, 4, 5 & 6.

August 31, 2023 Page 9 of 23

Stormwater Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control

Erosion Control and Construction Sequencing

With regard to work proposed on the project and erosion and siltation control, the sequence of activities will generally take place as follows:

- 1. Prior to site demolition activities, place all erosion controls (compost filled Filtrexx Soxx, straw bales and straw wattles along with silt sacks) in the locations specified on the drawings.
- 2. Damaged or loose siltation controls shall be replaced as necessary to maintain their function of controlling erosion and siltation. Silt sacks in catch basins shall be replaced as necessary to maintain its function of controlling erosion and siltation.
- 3. Remove any accumulation of silt or soil build-up behind the erosion controls as it occurs.
- 4. Throughout excavation, and grading operations the Contractor shall take other necessary precautions, including installation of temporary drainage swales, siltation sumps/filtration dams, check dams, straw bales, straw wattles and temporary pipe, to direct and control drainage from disturbed areas on the site so that erosion and siltation is minimal. In addition, no erosion or discharge of silt or larger particles shall occur in wetland areas or onto adjacent properties.
- 5. Remove all erosion control measures only when construction is completed, upland surfaces are stabilized, and the drainage system is fully operational, and the removal of the devices has been approved by the Owner and the Civil Engineer and the Town of Lynnfield.

If the Contractor anticipates deviations from the above procedures, he shall obtain written approval from the Owner and the Civil Engineer prior to proceeding.

Erosion and Sediment Control BMP's

The Erosion and Sediment Controls represent the suggested best management practices proposed for the project. The Contractor's approach to controlling stormwater runoff from the site may vary however he must implement appropriate corresponding erosion control measures.

The use of erosion and sediment controls are mandatory and must be employed to minimize impacts to adjacent areas during construction. If sediment escapes the construction site, off-site accumulations of sediment must be removed at a frequency sufficient to minimize off-site impacts.

The control practices which are required to minimize stormwater pollution during construction must remain functional until disturbed areas have been stabilized. Erosion control products are to be installed and maintained in accordance with manufacturer's specifications and good engineering practices.

The most important aspects of controlling erosion and sedimentation are limiting the extent of drainage structures. These fundamental principles will be the key factors in the contractor's control of erosion on the project site. If appropriate, the contractor will construct temporary diversion swales and settling basins or use a settling tank. If additional drainage or erosion control measures are needed, they will be located up-gradient from the straw bales and silt fences.

The contractor is responsible for the maintenance and repair of all erosion control devices on-site. All erosion control devices will be regularly inspected. At no time will silt-laden water be allowed to enter sensitive areas (wetlands, streams, and drainage systems). Any runoff from disturbed surfaces will be directed through a sedimentation process prior to being discharged to the existing on site drainage system.

The contractor will establish a staging area for the overnight storage of equipment and stockpiling of materials. In the staging area, the contractor will have a stockpile of materials required to control erosion on-site to be used to supplement or repair erosion control devices. These materials will include, but are not limited to straw bales, straw wattles, compost filled Filtrexx Soxx, siltation control fence, stakes, erosion control matting, and crushed stone. As mentioned previously, erosion and sedimentation controls will be employed to minimize the erosion and transport of sediment into resource areas during the earthwork and construction phases of the Project. Erosion and sedimentation control measures will be

installed prior to site excavation or disturbance and will be maintained throughout the construction period.

The contractor is responsible for erosion control on the site and will utilize supplemental erosion control measures to supplement the erosion controls shown on the plans prepared for this project to work with his day to day operations at the site.

Primary erosion control techniques proposed include compost filled filtrexx soxx, , straw wattles, straw bale barriers and silt sacks, inlet sediment traps, siltation control dikes, a stabilized construction entrance, temporary diversion channels, and temporary sedimentation ponds when applicable. A detailed description of each technique is discussed below. During the growing season, slope stabilization will be achieved by applying topsoil followed by seeding and mulching as soon as final grades are achieved. Organic mulching, jute netting, geo-textiles, or a combination will be used to stabilize slopes completed outside of the growing season.

Best Management Practices (BMPs)

Compost Filled Filtrexx Soxx, Straw Wattles and Straw bales

Erosion control barriers will be installed in the locations shown on the drawings or as directed in the field by the Owner and the Civil Engineer prior to the start of construction. These barriers will remain in place until all tributary surfaces have been fully stabilized.

The barriers will be placed to trap sediment transported by runoff before it reaches the drainage system or leaves the construction site. In areas where high runoff velocities or high sediment loads are expected, silt fencing may be installed adjacent to the straw wattle barriers. This semi-permeable barrier made of a synthetic porous fabric will provide additional protection. The barriers will be replaced as determined by periodic field inspection. The underside of the barriers will be kept in close contact with the earth and reset as necessary. Straw wattles will be maintained and cleaned until slopes have healthy stands of grass and all proposed paved areas have been paved with the binder course of pavement.

Drain System Protection

Silt Sack sediment traps supplemented with straw bale erosion checks will be installed at drainage structures and maintained and cleaned until slopes have healthy stands of grass. Catch basins, drain inlets, stormwater treatment units and storm drain pipes will be cleaned of sediment and debris after the completion of construction. Sediment collected in structures will be disposed of properly and covered, if stored on-site.

• Until tributary areas are stabilized, catch basin inlets will be fitted with Silt Sacks. If intense rainfall is predicted before all tributary areas are stabilized, erosion control measures will be reinforced for the duration of the storm. Downstream areas will be inspected, and any sediment removed at the end of the storm.

• Unfiltered water will not be allowed to enter pipes from unstabilized surfaces.

• Trench excavation will be limited to the minimum length required for daily pipe installation. All trenches will be backfilled as soon as possible. The ends of pipes will be closed nightly with plywood

• During construction of the site, silt-laden waters should be intercepted prior to reaching catch basins. Any gross depositions of materials on paved surfaces will be removed by sweeping.

• All paved areas will be swept on a weekly basis, as permitted by weather, during the construction period.

• Catch basins should be inspected monthly and cleaned in anticipation of the winter season in November and at the same time the roads are swept in the spring.

Utility Construction

The Contractor will construct utility trenches in a manner that will not direct runoff toward wetlands or to drainage system structures.

Stabilization Activities

All disturbed surfaces will be stabilized within 14 days after construction in any portion of the project site is completed or is temporarily halted, unless additional construction is intended to be initiated within 14 days. The Contractor will not disturb more area than can be stabilized within 14 days unless the area is to remain active. The Contractor will not disturb more area than can be stabilized within the same construction season.

Slope Stabilization

The smallest practicable area of land will be exposed at a time. Slopes greater than three-to-one (horizontal to vertical) will be stabilized with seed, organic mulch, jute fabric, or rip-rap, as appropriate, to prevent erosion during construction. After disturbed areas have been stabilized, the temporary erosion control measures will be removed, and accumulated sediment will be removed and disposed of in an appropriate location. Disturbed areas will be stabilized with appropriate ground cover as soon as possible. After the removal of temporary erosion control measures, disturbed areas will receive a layer of topsoil with seeding for stabilization.

Stabilized Construction Entrance

Temporary stabilized construction entrance or entrances will be installed at the project site. The purpose of the construction entrance is to remove sediment attached to vehicle tires and to minimize sediment transport and deposition onto public road surfaces. The construction entrance or entrances will be composed of crushed stone which will be replenished as necessary to maintain their proper function.

Inspections

The Contractor shall perform the following inspections in accordance with the 2022 EPA Construction General Permit Conditions which require routine inspections of the site and careful documentation of events and conditions. The following inspection activities will be completed by a qualified, designated site monitor.

- Erosion control, sedimentation prevention, and stormwater management measures will be inspected at least once per week throughout the construction period.
- All controls, outfalls, and potential problem areas will also be inspected within 24 hours of any storm exceeding 0.25 inches of precipitation.

A log of inspection results will be maintained on-site and will include the name of the inspector, date, major observations, and necessary corrective measures.

Built up sediment will be removed when it has reached one-third the height of the straw wattle.

All needed repairs or modifications will be reported to the contractors to permit the timely implementation of required actions. Where necessary repairs do not pose an immediate concern, repairs or modifications will be implemented within two (2) days of inspection.

A report summarizing the scope of the inspection, name(s) and qualifications of personnel making the inspection, the date(s) of the inspection, major observations relating to the implementation of this CPPPP, and actions taken will be made and retained as part of the CPPPP.

Maintenance

The following maintenance practices will be used by the Contractor to maintain erosion and sediment controls. Maintenance activities will be documented on his Inspection Report.

Erosion and sediment control measures and other protective measures must be maintained in effective operating condition.

• If site inspections indicate that the BMPs are not operating effectively, maintenance must be performed as soon as possible and before the next storm event whenever practicable to maintain the continued effectiveness of the BMPs.

• If existing BMPs need to be modified or if additional BMPs are necessary for any reason, implementation must be completed before next storm event whenever practicable.

• Pollution prevention measures must be maintained in good working order. If a repair is necessary, it will be initiated, if practicable, within 24 hours of report.

• Accumulated sediment within the catch basin inlet protection must be removed on a weekly basis.

• Maintenance and inspection of pollution prevention measures must be continued on the site for as long as a portion of the site remains disturbed.

• Stabilization measures will be initiated as soon as practicable on portions of the site where construction has temporarily or permanently ceased. This will occur in NO CASE more than 14 days after construction activities have temporarily or permanently ceased.

• If issues are identified at hazardous materials storage areas, corrective actions will be implemented immediately. If leaks or spills are identified procedures outlined in Standard 9 will be followed.

Stormwater Standard 9: Operation and Maintenance Plan

Property Description:

The property which is the subject of this O & M Manual is located at 397 Walnit Street aka 1 King Rail Drive in Lynnfield, MA. The land area of the property consists of 103.0± acres and contains the King Rail Reserve Golf Course.

Operation and Maintenance Plan

In accordance with the Stormwater Management Regulations issued by the Department of Environmental Protection (DEP) and the Town of Lynnfield Stormwater Management Bylaw, Linden Engineering Partners, LLC has prepared the following Operation and Maintenance Plan for the clubhouse portion of the property.

This plan is broken into two major sections. The first section describes operational management practices. The second section is devoted to the operation and maintenance plan.

Basic Information

Property Owner & Financially Responsible Party: Town of Lynnfield, MA c/o Ms. Lisa DeMeo, P.E., Town Engineer

> August 31, 2023 Page 16 of 23

STORMWATER REPORT KING RAIL RESERVE GOLF COURSE CLUBHOUSE 397 WALNUT STREET aka 1 KING RAIL DRIVE LYNNFIELD, MA Town Hall, 55 Summer Street, Lynnfield, MA 01940 Tel: 781-334-9503

Good Housekeeping BMP's (Construction and Post Construction Periods)

The following good housekeeping practices will be followed onsite during and after the construction project:

- An effort will be made to store only enough product required to do a particular job. All materials stored onsite will be stored in a neat, orderly manner in their appropriate containers and, if possible under a roof or other enclosure.
- Products will be kept in their original containers with the original manufacturer's label.
- Substances will not be mixed with one another unless recommended by the manufacturer.
- Whenever possible, all of a product will be used up before disposing of the container.
- Manufacturer's recommendations for proper use and disposal will be followed.

Material Handling and Waste Management

Hazardous Products:

These practices will be used to reduce the risks associated with hazardous materials. Material Safety Data Sheets (MSDSs) for each substance with hazardous properties that is used on the property will be obtained and used for the proper management of potential wastes that may result from these products. An MSDS will be posted in the immediate area where such product is stored and/or used and another copy of each MSDS will be maintained in the property management office. Each employee who must handle a substance with hazardous properties will be instructed on the use of MSDS sheets and the specific information in the applicable MSDS for the product they are using, particularly regarding spill control techniques.

- Products will be kept in original containers unless they are not re-sealable.
- Original labels and material safety data will be retained; they contain important product information.

August 31, 2023 Page 17 of 23

• If surplus product must be disposed of, manufacture's or local and State recommended methods for proper disposal will be followed.

Hazardous Waste

All hazardous waste material will be disposed of in the manner specified by local, state, and/or federal regulations and by the manufacturer of such products. Site personnel will be instructed in these practices by the job site superintendent, who will also be responsible for seeing that these practices are followed.

Sanitary Wastes

All sanitary waste will be disposed of by means of the municipal sewer system connected to the building on the property

Equipment Fueling

No fuel shall be stored on the property except for fuel stored in approved containers. All fueling areas will be inspected and cleaned weekly as necessary.

Spill Prevention and Control Plan

The property manager will train all personnel in the proper handling and cleanup of spilled materials. No spilled hazardous materials or hazardous wastes will be allowed to come in contact with storm water discharges. If such contact occurs, the storm water discharge will be contained on site until appropriate measures in compliance with state and federal regulations are taken to dispose of such contaminated storm water. It shall be the responsibility of the job site superintendent to properly train all personnel in spill prevention and clean up procedures.

In order to minimize the potential for a spill of hazardous materials to come into contact with storm water, the following steps will be implemented:

1. All materials with hazardous properties (such as pesticides, petroleum products, fertilizers, detergents, chemicals, acids, paints, paint solvents, cleaning solvents will be stored in a secure location, with their lids on, under cover, when not in use.

- 2. The minimum practical quantity of all such materials will be kept on the property at all times.
- 3. A spill control and containment kit (containing, for example, absorbent materials, acid neutralizing powder, brooms, dust pans, mops, rags, gloves, goggles, plastic and metal trash containers, etc.) will be provided at the storage site. Catch basin inlet cover blankets and inflatable pipe plugs will be used to seal the openings in the outlet control structure and isolate product in the wet basin should a spill occur.
- 4. Manufacturer's recommended methods for spill cleanup will be clearly posted and site personnel will be trained regarding these procedures and the location of the information and cleanup supplies.

In the event of a spill, the following procedures should be followed:

- 1. All spills will be cleaned up immediately after discovery.
- 2. The spill area will be kept well ventilated and personnel will wear appropriate protective clothing to prevent injury from contact with the hazardous substances.
- 3. The property manager will be notified immediately.
- 4. Spills of toxic or hazardous materials will be reported to the appropriate federal, state, and/or local government agency, regardless of the size of the spill.

The property manager will be the spill prevention and response coordinator. He/she will designate the individuals who will receive spill prevention and response training. These individuals will each become responsible for a particular phase of prevention and response. The names of these personnel will be posted in the property management office.

Allowable Non-Stormwater Discharge Management

Certain types of discharges are allowed under the NPDES Permit System, and it is the intent of this O & M Plan to allow such discharges. These types of discharges will be allowed under the conditions that no pollutants will be allowed

August 31, 2023 Page 19 of 23

to come into contact with the water prior to or after its discharge. The control measures that have been outlined previously in this O & M Plan will be strictly followed to ensure that no contamination of these non-stormwater discharges takes place. The following non-stormwater discharges that may occur from the job site include:

- Discharges from fire-fighting activities
- Fire Hydrant flushings
- Waters used to wash vehicles where detergents are not used
- Water used to control dust in accordance with off-site vehicle tracking
- Potable water including uncontaminated water line flushings
- Routine external building wash down that does not use detergents

• Pavement wash waters where spills or leaks of toxic or hazardous materials have not occurred (unless all spilled material has been removed) and where detergents are not used

- Uncontaminated air conditioner compressor condensate
- Uncontaminated ground water or spring water
- Foundation or footing drains where flows are not contaminated with process materials such as solvents
- Uncontaminated excavation dewatering
- Landscape irrigation

STORMWATER MANAGEMENT SYSTEM MAINTENANCE

Stormwater BMP's

Several types of structural and non-structural water quality controls in various combinations are proposed to treat stormwater generated on the site. These measures include deep sump catch basins, stormwater treatment units, above ground and underground infiltration systems. These Water quality treatment measures will result in the removal of most of the total suspended solids (TSS) load in runoff prior to discharge from the site, consistent with DEP's TSS removal standards.

Post-Development Activities

1. Paved Areas: Paved Areas shall be mechanically swept during the dry weather to remove excess sediments, thereby reducing the amount of sediments that the drainage system will have to remove from the runoff.

August 31, 2023 Page 20 of 23

Paved areas shall be mechanically swept a minimum of two times each year (in the spring after all snow and ice have melted and late in the fall prior to snowfall).

- 2. The use of salt or chemicals for de-icing on the paved areas during the winter months shall be limited to the minimum amount necessary to maintain pedestrian and vehicle safety. Alternative measures to sodium chloride are encouraged for use at the site.
- 3. Deep Sump Catch Basins: All Catch basins shall be inspected at least four times/year (once in the spring at the end of snowfall and once at the end of the fall foliage season and two other times spaced throughout the year) to verify that the inlet openings are not clogged by debris and to determine if the sump needs to be cleaned). Any debris shall be removed from the inlet grates and disposed of properly. The catch basin sumps shall be inspected and cleaned whenever the depth of the sediment is 25% or more of the sump depth or cleaned a minimum of twice annually. Material shall be removed from the catch basins and disposed of in accordance with all applicable regulations.
- 4. The Stormwater Treatment Units (Cascade): Stormwater Treatment Units shall be cleaned and inspected a minimum of four times per year for the first year and twice per year thereafter if the silt trap is not full in six months. Cleaning shall be in strict conformance with the manufacturer's written instructions which are attached to this Operations and Maintenance Plan.
- The Subsurface (Underground) Infiltration Structures and the inlet/outlet pipes shall be inspected a minimum of twice/year for signs of accumulated water, debris and rodent activity. Remove any debris that is observed. Implement appropriate corrective action if any issues are discovered during the inspections.
- The sediment forebays shall be inspected a minimum of twice/year.
 Collected sediment shall be removed and any signs of erosion shall be repaired.
- 7. The above ground infiltration basins shall be Inspected at least twive per year to ensure the basin is operating as designed. Inspect the outlet pipes and structure for evidence of clogging or excessive outflow releases.

August 31, 2023 Page 21 of 23

During inspections, note any changes to the basins or the contributing watershed area because these may affect basin performance. At least twice a year, mow the vegetation in and around the basin. Remove sediment from the basin as necessary, and at least once every 10 years.

- 8. All sediments removed from the site drainage facilities shall be disposed of properly and in accordance with all applicable local and state regulations.
- All vegetated slope areas on the site shall be stabilized following completion of construction and maintained to control erosion. Any disturbed areas shall be re-seeded and stabilized by the application of jute mesh if the slope exceeds 3 feet horizontal to 1 foot vertical.
- 10. Maintenance Responsibilities: All post-construction maintenance activities shall be documented and kept on file and made available to the Town of Lynnfield Conservation Commission. Post-construction maintenance shall be the responsibility of the Property Owner.

All structural BMP's and maintenance responsibilities as identified on the site plans and within this document will be owned and maintained by the owner of the property and shall run with the title of the property.

Annual Reporting Form

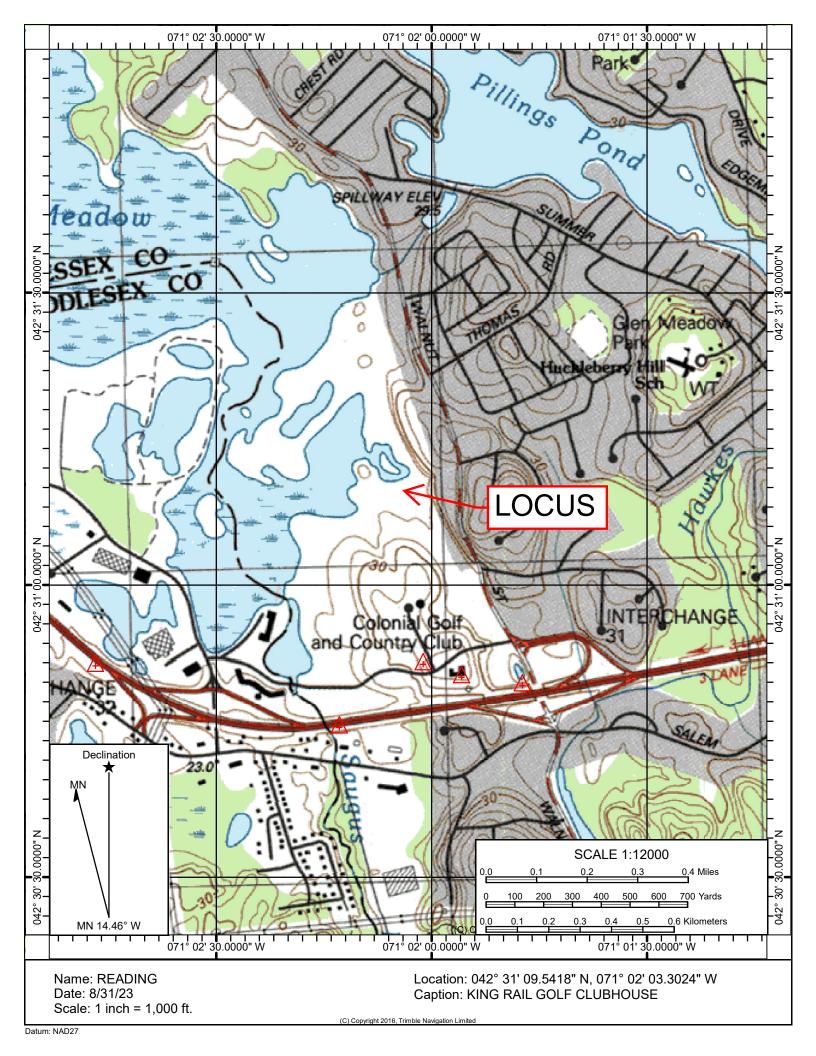
The Owner of the facility shall keep complete records of all BMP maintenance activities.

Annual Operating Budget

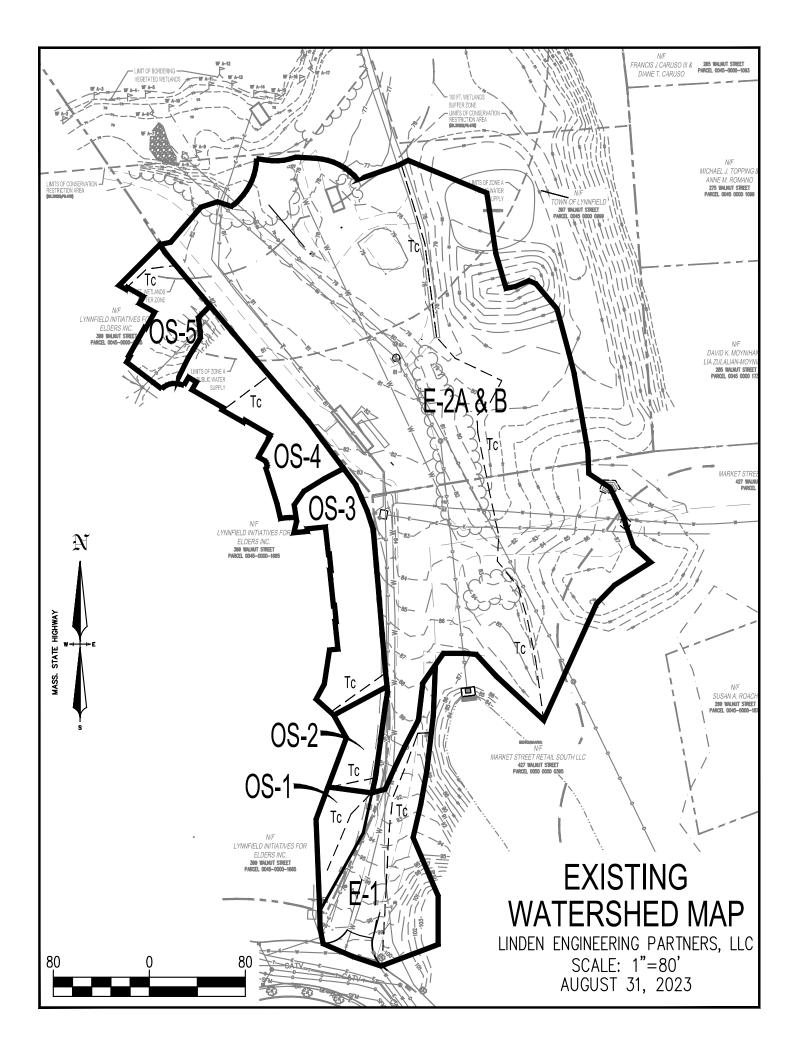
The estimated annual operating budget for the O & M Plan for property is \$ 4,000.

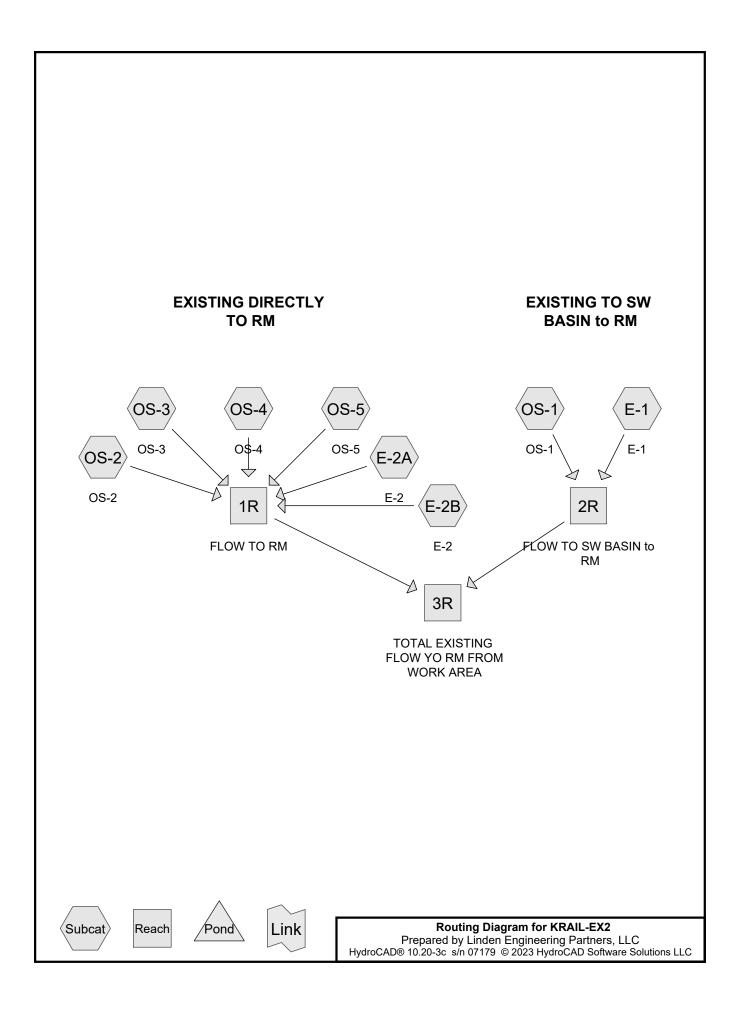
Plan of BMP's

Reference is made to the site utility plan for the project for the location of all BMP's.


Conclusion

The construction of the improvements as proposed will provide runoff control for the completed project as required by the MADEP Stormwater Regulations.


Stormwater Standard 10: Prohibition of Illicit Discharges


A signed Illicit Discharge Compliance Statement will be provided prior to the discharge of stormwater through any of the new stormwater management BMPs. We note, however, that the project has been designed to avoid illicit discharges.

LOCUS MAP

EXISTING CONDITIONS RUNOFF CALCULATIONS (2, 10. 25 & 100 YEAR STORMS)

KRAIL-EX2

Prepared by Linden Engineering Partners, LLC HydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC

Page 2

Rainfall Events Listing (selected events)

Event#	Event	Storm Type	Curve	Mode	Duration	B/B	Depth	AMC
	Name				(hours)		(inches)	
1	100 year	Type III 24-hr		Default	24.00	1	6.50	2

KING RAIL EXISTING STORMWATER CALCULATIONS

KRAIL-EX2 Prepared by Linden Engineering Partners, LLC HydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC

Page 3

Area Listing (all nodes)

Area	CN	Description
 (acres)		(subcatchment-numbers)
1.932	61	>75% Grass cover, Good, HSG B (E-1, E-2A, OS-1, OS-2, OS-3, OS-4, OS-5)
0.103	56	Brush, Fair, HSG B (E-2A)
0.793	96	Gravel surface, HSG B (E-1, E-2B)
0.229	58	Meadow, non-grazed, HSG B (E-2A)
0.076	98	Paved parking, HSG B (E-1, E-2A, OS-3, OS-4)
3.133	70	TOTAL AREA

KING RAIL EXISTING STORMWATER CALCULATIONS

KRAIL-EX2

Prepared by Linden Engineering Partners, LLC HydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC

Page 4

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
0.000	HSG A	
3.133	HSG B	E-1, E-2A, E-2B, OS-1, OS-2, OS-3, OS-4, OS-5
0.000	HSG C	
0.000	HSG D	
0.000	Other	
3.133		TOTAL AREA

KING RAIL EXISTING STORMWATER CALCULATIONS

KRAIL-EX2

Prepared by Linden Engineering Partners, LLC	
HydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC	Page 5

Ground Covers (an nodes)								
HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground	Subcatchment	
(acres)	(acres)	(acres)	(acres)	(acres)	(acres)	Cover	Numbers	
 0.000	1.932	0.000	0.000	0.000	1.932	>75% Grass cover, Good	E-1,	
							E-2A,	
							OS-1,	
							OS-2,	
							OS-3,	
							OS-4,	
							OS-5	
0.000	0.103	0.000	0.000	0.000	0.103	Brush, Fair	E-2A	
0.000	0.793	0.000	0.000	0.000	0.793	Gravel surface	E-1, E-2B	
0.000	0.229	0.000	0.000	0.000	0.229	Meadow, non-grazed	E-2A	
0.000	0.076	0.000	0.000	0.000	0.076	Paved parking	E-1,	
							E-2A,	
							OS-3,	
							OS-4	
0.000	3.133	0.000	0.000	0.000	3.133	TOTAL AREA		

Ground Covers (all nodes)

KING RAIL EXISTING STORMWATER CALCULATIONS Type III 24-hr 100 year Rainfall=6.50"

Prepared by Linden Engineering Partners, LLC HydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC

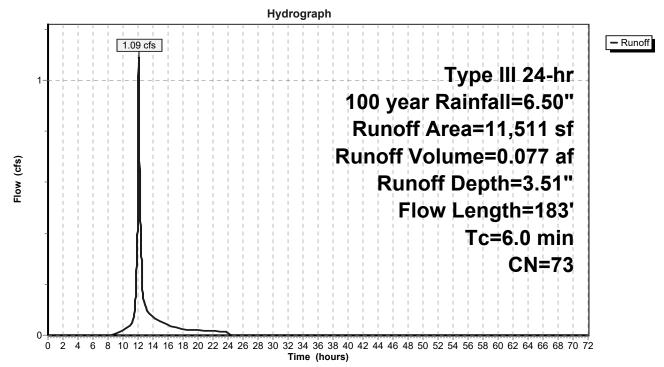
Page 6

Time span=0.00-72.00 hrs, dt=0.01 hrs, 7201 points x 3 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentE-1: E-1	Runoff Area=11,511 sf 5.64% Impervious Runoff Depth=3.51" Flow Length=183' Tc=6.0 min CN=73 Runoff=1.09 cfs 0.077 af
SubcatchmentE-2A: E-2	Runoff Area=66,706 sf 2.17% Impervious Runoff Depth=2.35" Flow Length=661' Tc=22.9 min CN=61 Runoff=2.58 cfs 0.300 af
SubcatchmentE-2B: E-2	Runoff Area=31,300 sf 0.00% Impervious Runoff Depth=6.03" Tc=6.0 min CN=96 Runoff=4.53 cfs 0.361 af
SubcatchmentOS-1: OS-1	Runoff Area=2,710 sf 0.00% Impervious Runoff Depth=2.35" Flow Length=75' Tc=6.3 min CN=61 Runoff=0.16 cfs 0.012 af
SubcatchmentOS-2: OS-2 Flow	Runoff Area=2,641 sf 0.00% Impervious Runoff Depth=2.35" Length=40' Slope=0.0500 '/' Tc=6.0 min CN=61 Runoff=0.16 cfs 0.012 af
SubcatchmentOS-3: OS-3 Flow	Runoff Area=8,426 sf 5.93% Impervious Runoff Depth=2.53" Length=50' Slope=0.1100 '/' Tc=6.0 min CN=63 Runoff=0.56 cfs 0.041 af
SubcatchmentOS-4: OS-4 Flow	Runoff Area=8,385 sf 8.35% Impervious Runoff Depth=2.63" Length=44' Slope=0.0400 '/' Tc=6.0 min CN=64 Runoff=0.58 cfs 0.042 af
SubcatchmentOS-5: OS-5 Flow	Runoff Area=4,795 sf 0.00% Impervious Runoff Depth=2.35" Length=46' Slope=0.0400 '/' Tc=6.0 min CN=61 Runoff=0.29 cfs 0.022 af
Reach 1R: FLOW TO RM	Inflow=7.23 cfs 0.777 af Outflow=7.23 cfs 0.777 af
Reach 2R: FLOW TO SW BASIN (to RM Inflow=1.25 cfs 0.089 af Outflow=1.25 cfs 0.089 af
Reach 3R: TOTAL EXISTING FLC	OW YO RM FROM WORK AREAInflow=8.48 cfs0.866 afOutflow=8.48 cfs0.866 af
Total Runoff Area	= 3.133 ac Runoff Volume = 0.866 af Average Runoff Depth = 3.32"

97.58% Pervious = 3.057 ac 2.42% Impervious = 0.076 ac

KRAIL-EX2


Summary for Subcatchment E-1: E-1

0.077 af, Depth= 3.51" Runoff 1.09 cfs @ 12.09 hrs, Volume= = Routed to Reach 2R : FLOW TO SW BASIN to RM

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100 year Rainfall=6.50"

Α	rea (sf)	CN [CN Description						
	649	98 F	98 Paved parking, HSG B						
	3,250	96 C	Gravel surfa	ace, HSG E	3				
	7,612	61 >	75% Gras	s cover, Go	bod, HSG B				
	11,511	73 V	Veighted A	verage					
	10,862	ç	4.36% Per	vious Area					
	649	5	5.64% Impe	ervious Area	а				
Tc	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
4.7	50	0.0800	0.18		Sheet Flow,				
					Grass: Dense n= 0.240 P2= 3.20"				
0.6	133	0.0480	3.53		Shallow Concentrated Flow,				
					Unpaved Kv= 16.1 fps				
5.3	183	Total, I	ncreased t	o minimum	Tc = 6.0 min				

Subcatchment E-1: E-1

KRAIL-EX2 Prepared by Linden Engineer Type III 24-hr 100 year Rainfall=6.50"

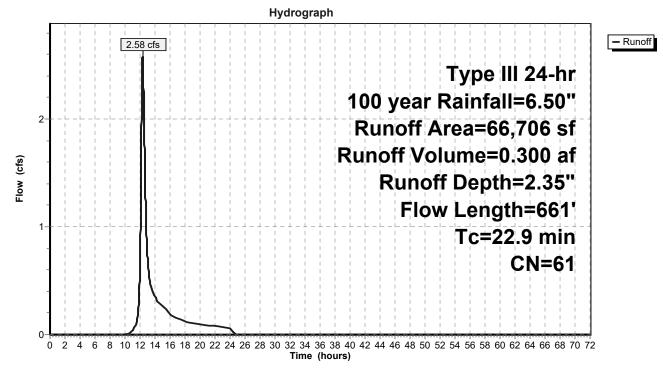
Prepared by Linden Engineering Partners, LLC HydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC

Page 8

Summary for Subcatchment E-2A: E-2

Runoff = 2.58 cfs @ 12.34 hrs, Volume= 0.300 af, Depth= 2.35" Routed to Reach 1R : FLOW TO RM

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100 year Rainfall=6.50"

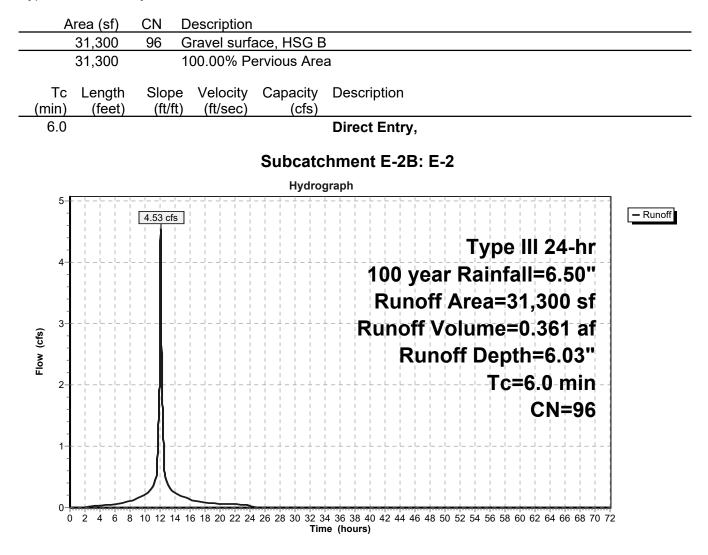

A	rea (sf)	CN E	Description						
	1,450	98 F	Paved parking, HSG B						
	4,500	56 E	Brush, Fair,	HSG B					
	9,970	58 N	leadow, no	on-grazed,	HSG B				
	50,786	61 >	75% Grass	s cover, Go	ood, HSG B				
	66,706	61 V	Veighted A	verage					
	65,256	9	7.83% Per	vious Area					
	1,450	2	.17% Impe	ervious Area	a				
Tc	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
7.0	50	0.0300	0.12		Sheet Flow,				
					Grass: Dense n= 0.240 P2= 3.20"				
2.4	150	0.0300	1.04		Shallow Concentrated Flow,				
					Kv= 6.0 fps				
1.4	50	0.0100	0.60		Shallow Concentrated Flow,				
					Kv = 6.0 fps				
10.4	264	0.0050	0.42		Shallow Concentrated Flow,				
. –					Kv = 6.0 fps				
1.7	147	0.0050	1.44		Shallow Concentrated Flow,				
					Paved Kv= 20.3 fps				
22.9	661	Total							

KING RAIL EXISTING STORMWATER CALCULATIONS Type III 24-hr 100 year Rainfall=6.50"

Prepared by Linden Engineering Partners, LLC HydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC

Page 9

Subcatchment E-2A: E-2



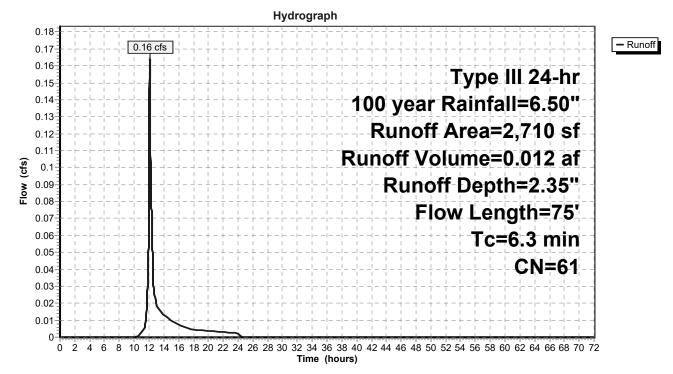
KRAIL-EX2

Summary for Subcatchment E-2B: E-2

Runoff = 4.53 cfs @ 12.08 hrs, Volume= 0.361 af, Depth= 6.03" Routed to Reach 1R : FLOW TO RM

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100 year Rainfall=6.50"

Summary for Subcatchment OS-1: OS-1


Page 11

0.012 af, Depth= 2.35" Runoff 0.16 cfs @ 12.10 hrs, Volume= Routed to Reach 2R : FLOW TO SW BASIN to RM

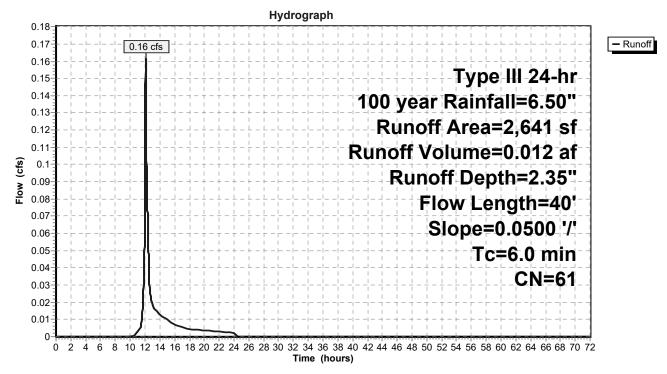
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100 year Rainfall=6.50"

A	Area (sf)	CN E	Description			
	2,710	61 >	75% Gras	s cover, Go	bod, HSG B	
	2,710	1	00.00% Pe	ervious Are	a	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
5.8	50	0.0472	0.14		Sheet Flow,	
0.5	25	0.0200	0.85		Grass: Dense n= 0.240 P2= 3.20" Shallow Concentrated Flow, Kv= 6.0 fps	
6.3	75	Total				

Subcatchment OS-1: OS-1

Prepared by Linden Engineering Partners, LLC HydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC

Page 12


Summary for Subcatchment OS-2: OS-2

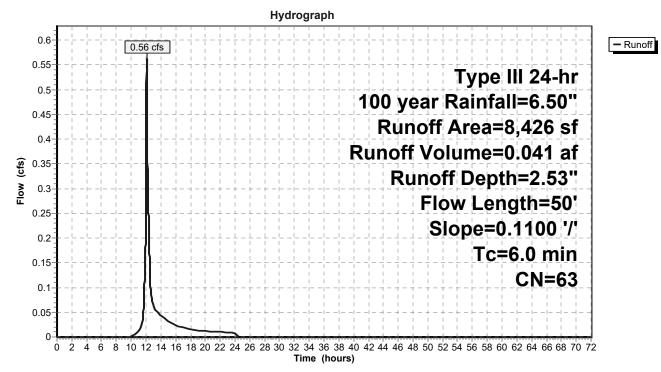
Runoff = 0.16 cfs @ 12.09 hrs, Volume= 0.012 af, Depth= 2.35" Routed to Reach 1R : FLOW TO RM

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100 year Rainfall=6.50"

_	A	rea (sf)	CN	Description								
		2,641	61	1 >75% Grass cover, Good, HSG B								
		2,641		100.00% Pervious Area								
_	Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description						
	4.8	40	0.0500	0.14		Sheet Flow, Grass: Dense	n= 0.240	P2= 3.20"				
_	4.8	40	Total,	Total, Increased to minimum $Tc = 6.0 min$								

Subcatchment OS-2: OS-2

KRAIL-EX2

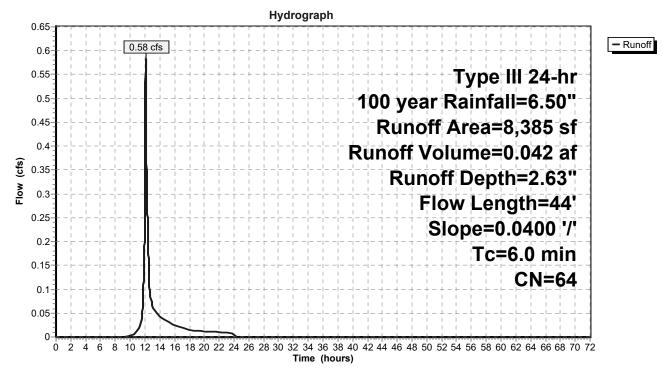

Summary for Subcatchment OS-3: OS-3

0.56 cfs @ 12.09 hrs, Volume= 0.041 af, Depth= 2.53" Runoff = Routed to Reach 1R : FLOW TO RM

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100 year Rainfall=6.50"

A	vrea (sf)	CN [Description								
	500	98 F	Paved park	Paved parking, HSG B							
	7,926	61 >	>75% Ġras	75% Grass cover, Good, HSG B							
	8,426	63 \	Neighted A	Veighted Average							
	7,926	ę	94.07% Per	vious Area							
	500	Ę	5.93% Impervious Area								
Tc	Length	Slope		Capacity	Description						
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)							
4.1	50	0.1100	0.20		Sheet Flow,						
					Grass: Dense	n= 0.240	P2= 3.20"				
4.1	50	Total.	Increased t	o minimum	Tc = 6.0 min						

Subcatchment OS-3: OS-3


Summary for Subcatchment OS-4: OS-4

Runoff = 0.58 cfs @ 12.09 hrs, Volume= 0.042 af, Depth= 2.63" Routed to Reach 1R : FLOW TO RM

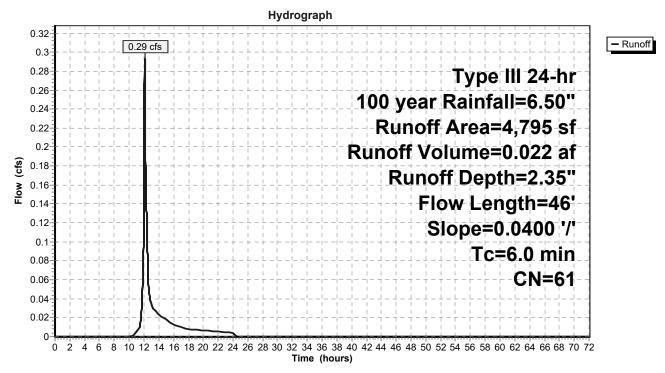
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100 year Rainfall=6.50"

A	rea (sf)	CN E	Description							
	700	98 F	Paved parking, HSG B							
	7,685	61 >	>75% Grass cover, Good, HSG B							
	8,385	64 V	Weighted Average							
	7,685	ç	1.65% Per	vious Area						
	700	8	8.35% Impe	ervious Area	а					
Тс	Length	Slope	Velocity	Capacity	Description					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
5.6	44	0.0400	0.13		Sheet Flow,					
					Grass: Dense	n= 0.240	P2= 3.20"			
5.6	44	Total, I	otal, Increased to minimum Tc = 6.0 min							

Subcatchment OS-4: OS-4

KRAIL-EX2

Page 15


Summary for Subcatchment OS-5: OS-5

Runoff = 0.29 cfs @ 12.09 hrs, Volume= 0.022 af, Depth= 2.35" Routed to Reach 1R : FLOW TO RM

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100 year Rainfall=6.50"

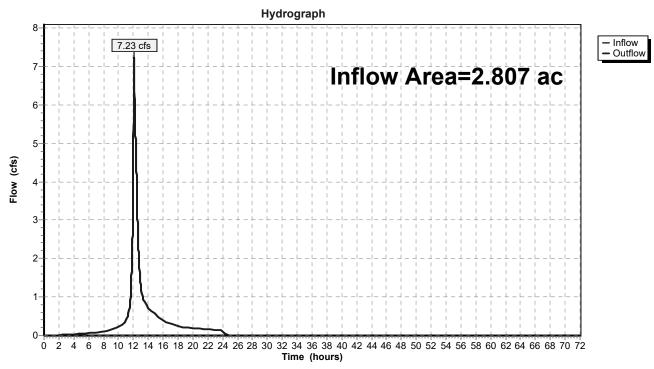
_	Α	rea (sf)	CN I	Description								
		4,795	61 :	61 >75% Grass cover, Good, HSG B								
		4,795		100.00% Pervious Area								
	Tc (min)	Length (feet)		Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)								
	5.8	46	0.0400	0.13		Sheet Flow, Grass: Dense	n= 0.240	P2= 3.20"				
-	5.8	46	Total, Increased to minimum $Tc = 6.0 min$									

Subcatchment OS-5: OS-5

 KING RAIL EXISTING STORMWATER CALCULATIONS

 KRAIL-EX2

 Type III 24-hr 100 year Rainfall=6.50"

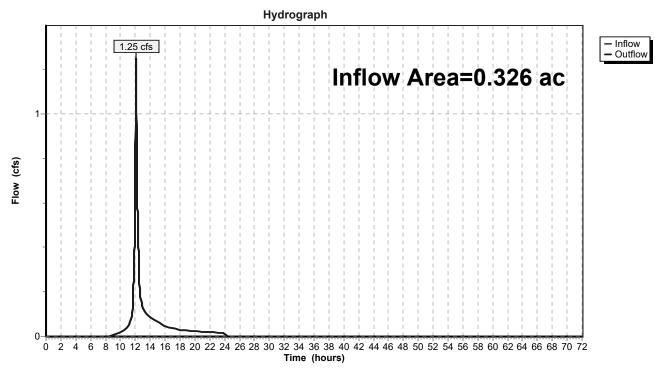

 Prepared by Linden Engineering Partners, LLC

 HydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC
 Page 16

Summary for Reach 1R: FLOW TO RM

Inflow Area = 2.807 ac, 2.17% Impervious, Inflow Depth = 3.32" for 100 year event Inflow = 7.23 cfs @ 12.09 hrs, Volume= 0.777 af Outflow = 7.23 cfs @ 12.09 hrs, Volume= 0.777 af, Atten= 0%, Lag= 0.0 min Routed to Reach 3R : TOTAL EXISTING FLOW YO RM FROM WORK AREA

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3

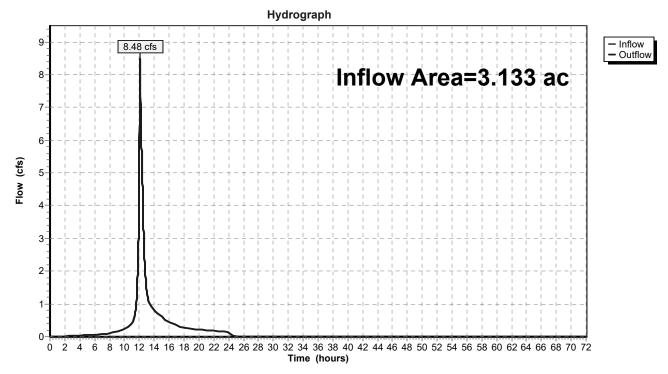


Reach 1R: FLOW TO RM

Summary for Reach 2R: FLOW TO SW BASIN to RM

Inflow Area = 0.326 ac, 4.56% Impervious, Inflow Depth = 3.29" for 100 year event Inflow = 1.25 cfs @ 12.09 hrs, Volume= 0.089 af Outflow = 1.25 cfs @ 12.09 hrs, Volume= 0.089 af, Atten= 0%, Lag= 0.0 min Routed to Reach 3R : TOTAL EXISTING FLOW YO RM FROM WORK AREA

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3


Reach 2R: FLOW TO SW BASIN to RM

Summary for Reach 3R: TOTAL EXISTING FLOW YO RM FROM WORK AREA

Inflow Area =	=	3.133 ac,	2.42% Impervious,	Inflow Depth =	3.32"	for 100 year event
Inflow =	=	8.48 cfs @	12.09 hrs, Volume	e= 0.866	af	
Outflow =	•	8.48 cfs @	12.09 hrs, Volume	e= 0.866	af, Atte	en= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3

Reach 3R: TOTAL EXISTING FLOW YO RM FROM WORK AREA

KRAIL-EX2 Prepared by Linden Engineering Partners, LLC HydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC

Page 19

 Event#	Event Name	Storm Type	Curve	Mode	Duration (hours)	B/B	Depth (inches)	AMC
1	2 year	Type III 24-hr		Default	24.00	1	3.10	2
2	10 year	Type III 24-hr		Default	24.00	1	4.55	2
3	25 year	Type III 24-hr		Default	24.00	1	5.45	2

Rainfall Events Listing (selected events)

Summary for Subcatchment E-1: E-1

Runoff = 0.26 cfs @ 12.10 hrs, Volume= 0.020 af, Depth= 0.92" Routed to Reach 2R : FLOW TO SW BASIN to RM

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2 year Rainfall=3.10"

	Α	rea (sf)	CN [Description						
		649	98 F	Paved park	ing, HSG B	8				
		3,250	96 (Gravel surfa	ace, HSG E	3				
		7,612	61 >	75% Grass cover, Good, HSG B						
		11,511	73 \	Veighted A	verage					
		10,862	ę	94.36% Per	vious Area					
		649	Ę	5.64% Impe	ervious Area	а				
	Тс	Length	Slope	Velocity	Capacity	Description				
(m	in)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
4	4.7	50	0.0800	0.18		Sheet Flow,				
						Grass: Dense n= 0.240 P2= 3.20"				
(0.6	133	0.0480	3.53		Shallow Concentrated Flow,				
						Unpaved Kv= 16.1 fps				
				Total, Increased to minimum Tc = 6.0 min						

Summary for Subcatchment E-2A: E-2

Runoff = 0.30 cfs @ 12.46 hrs, Volume= Routed to Reach 1R : FLOW TO RM 0.052 af, Depth= 0.40"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2 year Rainfall=3.10"

Area (sf)	CN	Description				
1,450	98	aved parking, HSG B				
4,500	56	ush, Fair, HSG B				
9,970	58	eadow, non-grazed, HSG B				
50,786	61	>75% Grass cover, Good, HSG B				
66,706	61	Weighted Average				
65,256		97.83% Pervious Area				
1,450		2.17% Impervious Area				

KRAIL-EX2

KING RAIL EXISTING STORMWATER CALCULATIONS

0.159 af, Depth= 2.65"

Type III 24-hr 2 year Rainfall=3.10"

Page 21

Prepared by Linden Engineering Partners, LLC HydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC

٦ miı)	Гc n)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
7	.0	50	0.0300	0.12		Sheet Flow,
						Grass: Dense n= 0.240 P2= 3.20"
2	.4	150	0.0300	1.04		Shallow Concentrated Flow,
						Kv= 6.0 fps
1	.4	50	0.0100	0.60		Shallow Concentrated Flow,
						Kv= 6.0 fps
10	.4	264	0.0050	0.42		Shallow Concentrated Flow,
						Kv= 6.0 fps
1	.7	147	0.0050	1.44		Shallow Concentrated Flow,
						Paved Kv= 20.3 fps

22.9 661 Total

Summary for Subcatchment E-2B: E-2

Runoff	=	2.08 cfs @	12.08 hrs,	Volume=
Routed	to	Reach 1R : FLOV	V TO RM	

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2 year Rainfall=3.10"

Area (sf)	CN	Description						
31,300	96	Gravel surface, HSG B						
31,300		100.00% P	ervious Are	a				
Tc Length (min) (feet)	Slop (ft/f	,	Capacity (cfs)	Description				
6.0				Direct Entry,				

Summary for Subcatchment OS-1: OS-1

Runoff = 0.02 cfs @ 12.13 hrs, Volume= 0.002 af, Depth= 0.40" Routed to Reach 2R : FLOW TO SW BASIN to RM

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2 year Rainfall=3.10"

 A	rea (sf)	CN [Description								
	2,710	61 >	1 >75% Grass cover, Good, HSG B								
	2,710	1	100.00% Pervious Area								
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description						
 5.8	50	0.0472	0.14		Sheet Flow,						
0.5	25	0.0200	0.85		Grass: Dense n= 0.240 P2= 3.20" Shallow Concentrated Flow, Kv= 6.0 fps						
 6.3	75	Total									

Summary for Subcatchment OS-2: OS-2

Runoff = 0.02 cfs @ 12.13 hrs, Volume= 0.002 af, Depth= 0.40" Routed to Reach 1R : FLOW TO RM

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2 year Rainfall=3.10"

Area	a (sf)	CN [Description								
2	2,641	61 >	>75% Grass cover, Good, HSG B								
2	2,641		100.00% Pervious Area								
Tc L (min)	ength (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description						
4.8	40	0.0500	0.14		Sheet Flow, Grass: Dense	n= 0.240	P2= 3.20"				
4.8	40	Total,	ncreased t	o minimum	Tc = 6.0 min						

Summary for Subcatchment OS-3: OS-3

Runoff = 0.07 cfs @ 12.12 hrs, Volume= 0.008 af, Depth= 0.48" Routed to Reach 1R : FLOW TO RM

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2 year Rainfall=3.10"

A	rea (sf)	CN [Description							
	500	98 F	Paved parking, HSG B							
	7,926	61 >	75% Grass cover, Good, HSG B							
	8,426	63 V	0 0							
	7,926	ç	94.07% Per	vious Area						
	500	5	5.93% Impe	ervious Area	а					
Тс	Length	Slope		Capacity	Description					
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)						
4.1	50	0.1100	0.20		Sheet Flow,					
					Grass: Dense	n= 0.240	P2= 3.20"			
4.1	50	Total,	ncreased t	o minimum	Tc = 6.0 min					

Summary for Subcatchment OS-4: OS-4

Runoff = 0.08 cfs @ 12.11 hrs, Volume= 0.008 af, Depth= 0.51" Routed to Reach 1R : FLOW TO RM

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2 year Rainfall=3.10"

KING RAIL EXISTING STORMWATER CALCULATIONS Type III 24-hr 2 year Rainfall=3.10"

KRAIL-EX2

Prepared by Linden Engineering Partners, LLCHydroCAD® 10.20-3cs/n 07179© 2023 HydroCAD Software Solutions LLCPage 23

A	rea (sf)	CN I	Description								
	700	98 I	98 Paved parking, HSG B								
	7,685	61 >	>75% Grass cover, Good, HSG B								
	8,385	64 \	Weighted Average								
	7,685	ć	91.65% Pervious Area								
	700	8	3.35% Impe	ervious Area	а						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description						
5.6	44	0.0400	0.13		Sheet Flow,						
					Grass: Dense	n= 0.240	P2= 3.20"				
5.6	44	Total,	Increased t	o minimum	Tc = 6.0 min						

Summary for Subcatchment OS-5: OS-5

Runoff = 0.03 cfs @ 12.13 hrs, Volume= 0.004 af, Depth= 0.40" Routed to Reach 1R : FLOW TO RM

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2 year Rainfall=3.10"

_	А	rea (sf)	CN I	Description									
		4,795	61 :	>75% Gras	s cover, Go	od, HSG B							
		4,795	·	100.00% Pervious Area									
_	Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description							
	5.8	46	0.0400	0.13		Sheet Flow,							
_						Grass: Dense	n= 0.240	P2= 3.20"		_			
	5.8	46	Total,	Increased t	o minimum	Tc = 6.0 min							

Summary for Reach 1R: FLOW TO RM

Inflow Area =2.807 ac,2.17% Impervious, Inflow Depth =0.99"for 2 year eventInflow =2.29 cfs @12.09 hrs, Volume=0.232 afOutflow =2.29 cfs @12.09 hrs, Volume=0.232 af, Atten= 0%, Lag= 0.0 minRouted to Reach 3R : TOTAL EXISTING FLOW YO RM FROM WORK AREA

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3

Summary for Reach 2R: FLOW TO SW BASIN to RM

Inflow Area = 0.326 ac, 4.56% Impervious, Inflow Depth = 0.82" for 2 year event Inflow = 0.28 cfs @ 12.10 hrs, Volume= 0.022 af Outflow = 0.28 cfs @ 12.10 hrs, Volume= 0.022 af, Atten= 0%, Lag= 0.0 min Routed to Reach 3R : TOTAL EXISTING FLOW YO RM FROM WORK AREA Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3

Summary for Reach 3R: TOTAL EXISTING FLOW YO RM FROM WORK AREA

Inflow Area =	3.133 ac,	2.42% Impervious, I	nflow Depth = 0.97"	for 2 year event
Inflow =	2.57 cfs @	12.09 hrs, Volume=	0.254 af	-
Outflow =	2.57 cfs @	12.09 hrs, Volume=	0.254 af, Atte	en= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3

Summary for Subcatchment E-1: E-1

Runoff = 0.59 cfs @ 12.09 hrs, Volume= 0.043 af, Depth= 1.93" Routed to Reach 2R : FLOW TO SW BASIN to RM

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 year Rainfall=4.55"

	Α	rea (sf)	CN [Description							
		649	98 F								
		3,250	96 (6 Gravel surface, HSG B							
		7,612	61 >	1 >75% Grass cover, Good, HSG B							
		11,511	73 \	0 0							
	10,862 94.36% Pervious Area										
	649 5.64% Impervious Area										
	Тс	Length	Slope	Velocity	Capacity	Description					
(m	in)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
4	4.7	50	0.0800	0.18		Sheet Flow,					
						Grass: Dense n= 0.240 P2= 3.20"					
(0.6	133	0.0480	3.53		Shallow Concentrated Flow,					
						Unpaved Kv= 16.1 fps					
						Tc = 6.0 min					

Summary for Subcatchment E-2A: E-2

Runoff = 1.10 cfs @ 12.37 hrs, Volume= Routed to Reach 1R : FLOW TO RM 0.141 af, Depth= 1.11"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 year Rainfall=4.55"

Area (sf)	CN	Description
1,450	98	Paved parking, HSG B
4,500	56	Brush, Fair, HSG B
9,970	58	Meadow, non-grazed, HSG B
50,786	61	>75% Grass cover, Good, HSG B
66,706	61	Weighted Average
65,256		97.83% Pervious Area
1,450		2.17% Impervious Area

KRAIL-EX2

KING RAIL EXISTING STORMWATER CALCULATIONS

0.245 af, Depth= 4.09"

Type III 24-hr 10 year Rainfall=4.55"

Prepared by Linden Engineering Partners, LLC HydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC

Page 26

	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	7.0	50	0.0300	0.12		Sheet Flow,
						Grass: Dense n= 0.240 P2= 3.20"
	2.4	150	0.0300	1.04		Shallow Concentrated Flow,
						Kv= 6.0 fps
	1.4	50	0.0100	0.60		Shallow Concentrated Flow,
						Kv= 6.0 fps
	10.4	264	0.0050	0.42		Shallow Concentrated Flow,
						Kv= 6.0 fps
	1.7	147	0.0050	1.44		Shallow Concentrated Flow,
_						Paved Kv= 20.3 fps
	~~~~	004	<b>-</b> · ·			

22.9 661 Total

# Summary for Subcatchment E-2B: E-2

Runoff	=	3.13 cfs @	12.08 hrs,	Volume=
Routed	to	Reach 1R : FLOW	' TO RM	

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 year Rainfall=4.55"

A	rea (sf)	CN E	Description							
	31,300	96 0	96 Gravel surface, HSG B							
	31,300	1	00.00% Pe	ervious Are	a					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
6.0					Direct Entry,					

# Summary for Subcatchment OS-1: OS-1

Runoff = 0.07 cfs @ 12.11 hrs, Volume= 0.006 af, Depth= 1.11" Routed to Reach 2R : FLOW TO SW BASIN to RM

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 year Rainfall=4.55"

A	rea (sf)	CN E	Description									
	2,710	61 >	61 >75% Grass cover, Good, HSG B									
	2,710	1	100.00% Pervious Area									
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description							
5.8	50	0.0472	0.14		Sheet Flow,							
0.5	25	0.0200	0.85		Grass: Dense n= 0.240 P2= 3.20" Shallow Concentrated Flow, Kv= 6.0 fps							
6.3	75	Total										

#### Summary for Subcatchment OS-2: OS-2

0.07 cfs @ 12.10 hrs, Volume= 0.006 af, Depth= 1.11" Runoff = Routed to Reach 1R : FLOW TO RM

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 year Rainfall=4.55"

Ar	ea (sf)	CN [	Description							
	2,641	61 >	61 >75% Grass cover, Good, HSG B							
	2,641	-	100.00% Pervious Area							
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
4.8	40	0.0500	0.14		Sheet Flow, Grass: Dense	n= 0.240	P2= 3.20"			
4.8	40	Total,	Increased t	o minimum	Tc = 6.0 min					

#### Summary for Subcatchment OS-3: OS-3

0.020 af, Depth= 1.23" Runoff 0.25 cfs @ 12.10 hrs, Volume= = Routed to Reach 1R : FLOW TO RM

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 year Rainfall=4.55"

A	rea (sf)	CN I	Description					
	500	98 I	Paved park	ing, HSG B	}			
	7,926	61 >	>75% Grass cover, Good, HSG B					
	8,426	63 N	Weighted Average					
	7,926	ę	04.07% Pervious Area					
	500	Ę	5.93% Impervious Area					
Тс	Length	Slope		Capacity	Description			
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)				
4.1	50	0.1100	0.20		Sheet Flow,			
					Grass: Dense	n= 0.240	P2= 3.20"	
4.1	50	Total,	Increased t	o minimum	Tc = 6.0 min			

#### Summary for Subcatchment OS-4: OS-4

Runoff	=	0.27 cfs @	12.10 hrs,	Volume=	0.021 af,	Depth= 1.30"
Routed	l to Read	ch 1R : FLOW	' TO RM			

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 year Rainfall=4.55"

#### KING RAIL EXISTING STORMWATER CALCULATIONS Type III 24-hr 10 year Rainfall=4.55"

**KRAIL-EX2** 

 Prepared by Linden Engineering Partners, LLC

 HydroCAD® 10.20-3c
 s/n 07179

 © 2023 HydroCAD Software Solutions LLC
 Page 28

A	rea (sf)	CN E	N Description							
	700	98 F	Paved parking, HSG B							
	7,685	61 >	>75% Grass cover, Good, HSG B							
	8,385	64 V	Weighted Average							
	7,685	ç	91.65% Pervious Area							
	700	8	8.35% Impervious Area							
Та	l e a aith	Clana	Volocity	Conseitu	Decemintion					
Tc	Length	Slope	Velocity	Capacity	Description					
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)						
5.6	44	0.0400	0.13		Sheet Flow,					
					Grass: Dense	n= 0.240	P2= 3.20"			
5.6	44	Total, I	Increased t	o minimum	Tc = 6.0 min					

# Summary for Subcatchment OS-5: OS-5

Runoff = 0.13 cfs @ 12.10 hrs, Volume= 0.010 af, Depth= 1.11" Routed to Reach 1R : FLOW TO RM

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 year Rainfall=4.55"

	A	rea (sf)	CN	Description						
		4,795	61	61 >75% Grass cover, Good, HSG B						
		4,795		100.00% Pervious Area						
(1	Tc min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description				
	5.8	46	0.0400	0.13		Sheet Flow,	0.040			
						Grass: Dense	n= 0.240	P2= 3.20"		
	5.8	46	Total,	Increased t	o minimum	Tc = 6.0 min				

# Summary for Reach 1R: FLOW TO RM

Inflow Area =2.807 ac,2.17% Impervious, Inflow Depth =1.89" for 10 year eventInflow =4.19 cfs @12.09 hrs, Volume=0.442 afOutflow =4.19 cfs @12.09 hrs, Volume=0.442 af, Atten= 0%, Lag= 0.0 minRouted to Reach 3R : TOTAL EXISTING FLOW YO RM FROM WORK AREA

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3

# Summary for Reach 2R: FLOW TO SW BASIN to RM

Inflow Area = 0.326 ac, 4.56% Impervious, Inflow Depth = 1.78" for 10 year event Inflow = 0.66 cfs @ 12.09 hrs, Volume= 0.048 af Outflow = 0.66 cfs @ 12.09 hrs, Volume= 0.048 af, Atten= 0%, Lag= 0.0 min Routed to Reach 3R : TOTAL EXISTING FLOW YO RM FROM WORK AREA Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3

# Summary for Reach 3R: TOTAL EXISTING FLOW YO RM FROM WORK AREA

Inflow Area =	3.133 ac,	2.42% Impervious, Inflow D	epth = 1.88" for 10 year event
Inflow =	4.85 cfs @	12.09 hrs, Volume=	0.491 af
Outflow =	4.85 cfs @	12.09 hrs, Volume=	0.491 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3

## Summary for Subcatchment E-1: E-1

Runoff = 0.82 cfs @ 12.09 hrs, Volume= 0.058 af, Depth= 2.64" Routed to Reach 2R : FLOW TO SW BASIN to RM

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25 year Rainfall=5.45"

ΑΑ	rea (sf)	CN E	Description						
	649	98 F	aved park	ing, HSG B	8				
	3,250	96 C	Gravel surfa	ace, HSG E	3				
	7,612	61 >	75% Grass cover, Good, HSG B						
	11,511	73 V	0 0						
	10,862	g	4.36% Per	vious Area					
	649	5	5.64% Impervious Area						
Тс	Length	Slope	Velocity	Capacity	Description				
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)					
4.7	50	0.0800	0.18		Sheet Flow,				
					Grass: Dense n= 0.240 P2= 3.20"				
0.6	133	0.0480	3.53		Shallow Concentrated Flow,				
					Unpaved Kv= 16.1 fps				
5.3	183	Total, I	Total, Increased to minimum Tc = 6.0 min						

# Summary for Subcatchment E-2A: E-2

Runoff = 1.75 cfs @ 12.34 hrs, Volume= Routed to Reach 1R : FLOW TO RM 0.210 af, Depth= 1.65"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25 year Rainfall=5.45"

Area (sf)	CN	Description	
1,450	98	Paved parking, HSG B	
4,500	56	Brush, Fair, HSG B	
9,970	58	Meadow, non-grazed, HSG B	
50,786	61	>75% Grass cover, Good, HSG B	
66,706	61	Weighted Average	
65,256 97.83% Pervious Area			
1,450		2.17% Impervious Area	

## **KRAIL-EX2**

# KING RAIL EXISTING STORMWATER CALCULATIONS

0.298 af, Depth= 4.98"

Type III 24-hr 25 year Rainfall=5.45"

Prepared by Linden Engineering Partners, LLC HydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC

Page 31

_	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	7.0	50	0.0300	0.12		Sheet Flow,
						Grass: Dense n= 0.240 P2= 3.20"
	2.4	150	0.0300	1.04		Shallow Concentrated Flow, Kv= 6.0 fps
	1.4	50	0.0100	0.60		Shallow Concentrated Flow, Kv= 6.0 fps
	10.4	264	0.0050	0.42		Shallow Concentrated Flow, Kv= 6.0 fps
	1.7	147	0.0050	1.44		Shallow Concentrated Flow,
_						Paved Kv= 20.3 fps
	~~~~	001	<b>—</b> · ·			

22.9 661 Total

Summary for Subcatchment E-2B: E-2

Runoff	=	3.78 cfs @	12.08 hrs,	Volume=
Routed	to Reac	h 1R : FLOW	' TO RM	

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25 year Rainfall=5.45"

Are	ea (sf)	CN D	escription						
3	1,300	96 G	Gravel surface, HSG B						
3	1,300	1	00.00% Pe	ervious Are	a				
Tc L (min)	_ength (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
6.0					Direct Entry,				

Summary for Subcatchment OS-1: OS-1

Runoff = 0.11 cfs @ 12.10 hrs, Volume= 0.009 af, Depth= 1.65" Routed to Reach 2R : FLOW TO SW BASIN to RM

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25 year Rainfall=5.45"

_	A	rea (sf)	CN E	Description				
	2,710 61 >75% Grass cover, Good, HSG B							
		2,710	1	00.00% Pe	ervious Are	a		
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
-	5.8	50	0.0472	0.14	· · · · ·	Sheet Flow,		
	0.5	25	0.0200	0.85		Grass: Dense n= 0.240 P2= 3.20" Shallow Concentrated Flow, Kv= 6.0 fps		
_	6.3	75	Total					

Page 32

Summary for Subcatchment OS-2: OS-2

0.11 cfs @ 12.10 hrs, Volume= Runoff 0.008 af, Depth= 1.65" = Routed to Reach 1R : FLOW TO RM

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25 year Rainfall=5.45"

	Area (sf)	CN	Description						
	2,641	61	61 >75% Grass cover, Good, HSG B						
	2,641		100.00% Pe	ervious Are	а				
T (min		Slope (ft/ft		Capacity (cfs)	Description				
4.8	8 40	0.0500	0.14		Sheet Flow, Grass: Dense	n= 0.240	P2= 3.20"		
4.8	8 40	Total,	Increased t	o minimum	Tc = 6.0 min				

Summary for Subcatchment OS-3: OS-3

0.029 af, Depth= 1.80" Runoff 0.39 cfs @ 12.10 hrs, Volume= = Routed to Reach 1R : FLOW TO RM

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25 year Rainfall=5.45"

A	rea (sf)	CN [Description						
	500	98 F	Paved parking, HSG B						
	7,926	61 >	>75% Gras	s cover, Go	ood, HSG B				
	8,426	63 \	Veighted A	verage					
	7,926	ę	94.07% Pervious Area						
	500	Ę	5.93% Impe	ervious Are	а				
Тс	Length	Slope		Capacity	Description				
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)					
4.1	50	0.1100	0.20		Sheet Flow,				
					Grass: Dense	n= 0.240	P2= 3.20"		
4.1	50	Total,	ncreased t	o minimum	Tc = 6.0 min				

Summary for Subcatchment OS-4: OS-4

0.41 cfs @ 12.09 hrs, Volume= 0.030 af, Depth= 1.88" Runoff = Routed to Reach 1R : FLOW TO RM

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25 year Rainfall=5.45"

KING RAIL EXISTING STORMWATER CALCULATIONS Type III 24-hr 25 year Rainfall=5.45"

KRAIL-EX2

 Prepared by Linden Engineering Partners, LLC

 HydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC

 Page 33

A	rea (sf)	CN I	Description						
	700	98 I	Paved parking, HSG B						
	7,685	61 ;	>75% Gras	s cover, Go	ood, HSG B				
	8,385	64	Neighted A	verage					
	7,685	ę	91.65% Per	vious Area					
	700	8	3.35% Impe	ervious Are	а				
Tc	Length	Slope	,	Capacity	Description				
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)					
5.6	44	0.0400	0.13		Sheet Flow,				
					Grass: Dense	n= 0.240	P2= 3.20"		
5.6	44	Total,	Increased t	o minimum	Tc = 6.0 min				

Summary for Subcatchment OS-5: OS-5

Runoff = 0.20 cfs @ 12.10 hrs, Volume= 0.015 af, Depth= 1.65" Routed to Reach 1R : FLOW TO RM

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25 year Rainfall=5.45"

_	А	rea (sf)	CN I	Description							
		4,795	61 :	61 >75% Grass cover, Good, HSG B							
		4,795	·	100.00% Pe	ervious Are	а					
_	Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description					
	5.8	46	0.0400	0.13		Sheet Flow,					
_						Grass: Dense	n= 0.240	P2= 3.20"		_	
	5.8	46	Total,	Increased t	o minimum	Tc = 6.0 min					

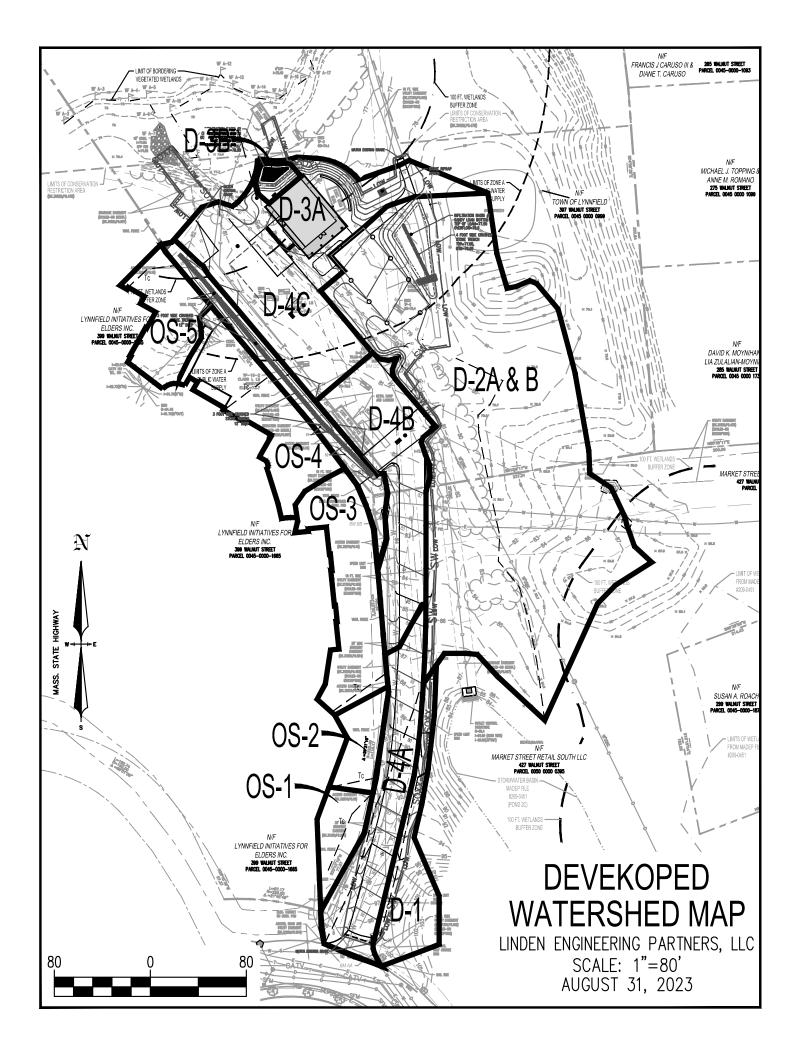
Summary for Reach 1R: FLOW TO RM

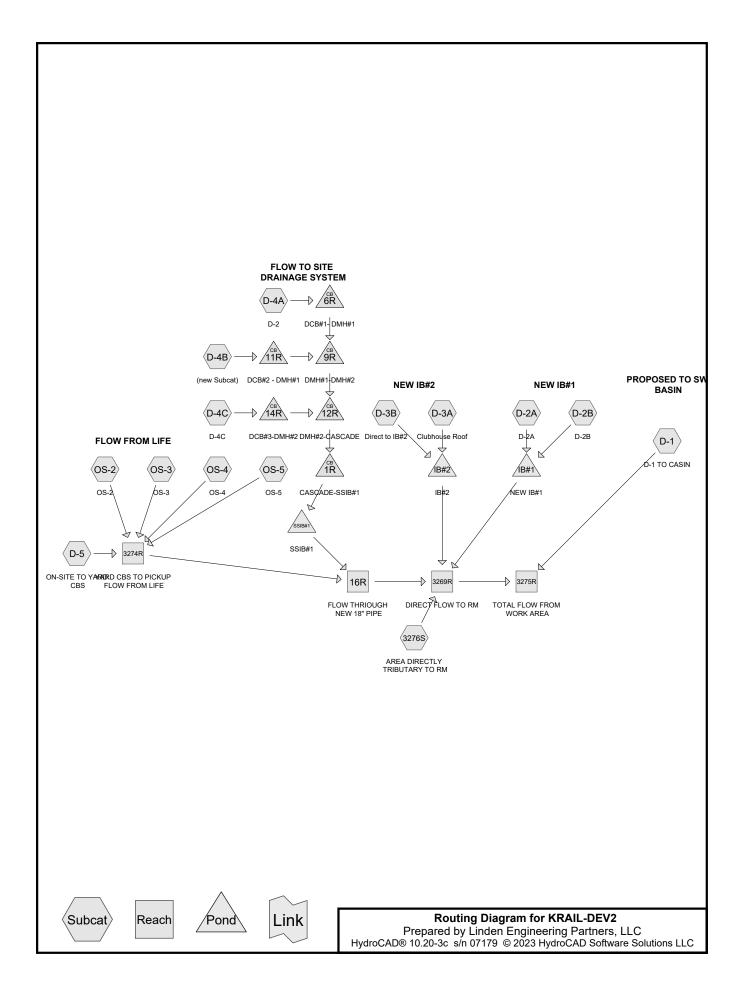
Inflow Area =2.807 ac,2.17% Impervious, Inflow Depth =2.53" for 25 year eventInflow =5.55 cfs @12.09 hrs, Volume=0.591 afOutflow =5.55 cfs @12.09 hrs, Volume=0.591 af, Atten= 0%, Lag= 0.0 minRouted to Reach 3R : TOTAL EXISTING FLOW YO RM FROM WORK AREA

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3

Summary for Reach 2R: FLOW TO SW BASIN to RM

Inflow Area = 0.326 ac, 4.56% Impervious, Inflow Depth = 2.45" for 25 year event Inflow = 0.93 cfs @ 12.09 hrs, Volume= 0.067 af Outflow = 0.93 cfs @ 12.09 hrs, Volume= 0.067 af, Atten= 0%, Lag= 0.0 min Routed to Reach 3R : TOTAL EXISTING FLOW YO RM FROM WORK AREA Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3


Summary for Reach 3R: TOTAL EXISTING FLOW YO RM FROM WORK AREA


Inflow Area =	3.133 ac,	2.42% Impervious, Inflo	w Depth = 2.52"	for 25 year event
Inflow =	6.47 cfs @	12.09 hrs, Volume=	0.658 af	-
Outflow =	6.47 cfs @	12.09 hrs, Volume=	0.658 af, Atte	en= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3

STORMWATER REPORT KING RAIL RESERVE GOLF COURSE CLUBHOUSE 397 WALNUT STREET aka 1 KING RAIL DRIVE LYNNFIELD, MA

PROPOSED CONDITIONS RUNOFF CALCULATIONS (2, 10. 25 & 100 YEAR STORMS)

KRAIL-DEV2

 Prepared by Linden Engineering Partners, LLC

 HydroCAD® 10.20-3c
 s/n 07179

 © 2023 HydroCAD Software Solutions LLC
 Page 2

Rainfall Events Listing (selected events)

Event#	Event	Storm Type	Curve	Mode	Duration	B/B	Depth	AMC
	Name				(hours)		(inches)	
 1	100 year	Type III 24-hr		Default	24.00	1	6.50	2

KRAIL-DEV2

 Prepared by Linden Engineering Partners, LLC

 HydroCAD® 10.20-3c
 s/n 07179

 © 2023 HydroCAD Software Solutions LLC
 Page 3

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
0.004	79	<50% Grass cover, Poor, HSG B (D-3B)
1.391	61	>75% Grass cover, Good, HSG B (3276S, D-1, D-2A, D-3B, D-4A, D-4B, D-4C, D-5,
		OS-2, OS-3, OS-4, OS-5)
0.096	56	Brush, Fair, HSG B (D-2A)
0.258	96	Gravel surface, HSG B (D-2B)
0.703	58	Meadow, non-grazed, HSG B (D-2A)
0.380	98	Paved parking, HSG B (3276S, D-4A, D-4B, OS-3, OS-4)
0.250	98	Paved roads w/curbs & sewers, HSG B (3276S, D-4C)
0.054	98	Roofs, HSG B (D-3A)
0.004	98	Water Surface, HSG B (3276S)
3.141	71	TOTAL AREA

KRAIL-DEV2

Prepared by Linden Engineering Partners, LLC HydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC

Page 4

Soil Listing (all nodes)

Area (acres)	Soil Group	Subcatchment Numbers
0.000	HSG A	
3.141	HSG B	3276S, D-1, D-2A, D-2B, D-3A, D-3B, D-4A, D-4B, D-4C, D-5, OS-2, OS-3, OS-4, OS-5
0.000	HSG C	
0.000	HSG D	
0.000	Other	
3.141		TOTAL AREA

KRAIL-DEV2

 Prepared by Linden Engineering Partners, LLC

 HydroCAD® 10.20-3c
 s/n 07179

 © 2023 HydroCAD Software Solutions LLC
 Page 5

			G	round Cov	vers (all no	des)		
				ISG-D acres) (Other acres) (a		Ground Cover	Subcatchment Numbers
0	.000	0.004	0.000	0.000	0.000	0.004	<50% Grass cover, Poor	D-3 B
0	.000	1.391	0.000	0.000	0.000	1.391	>75% Grass cover, Good	327 6S, D-1,
								D-2 A, D-3 B, D-4 A, D-4 B, D-4 C, D-5,
								OS- 2, OS- 3, OS- 4, OS- 5
0	.000	0.096	0.000	0.000	0.000	0.096	Brush, Fair	D-2 A
0	.000	0.258	0.000	0.000	0.000	0.258	Gravel surface	D-2 B
0	.000	0.703	0.000	0.000	0.000	0.703	Meadow, non-grazed	D-2 A
0	.000	0.380	0.000	0.000	0.000	0.380	Paved parking	327 6S, D-4 A,

D-4 B,

OS-

3,

OS-

4

KRAIL-DEV2

Prepared by Linden Engineering Partners, LLC HydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC

Page 6

Ground Covers (all nodes) (continued)

HSG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers
 0.000	0.250	0.000	0.000	0.000	0.250	Paved roads w/curbs & sewers	327
							6S,
							D-4
							С
0.000	0.054	0.000	0.000	0.000	0.054	Roofs	D-3
							А
0.000	0.004	0.000	0.000	0.000	0.004	Water Surface	327
							6S
0.000	3.141	0.000	0.000	0.000	3.141	TOTAL AREA	

KRAIL-DEV2

Prepared by Linden Engineering Partners, LLC HydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC

Page 7

Pipe Listing (all nodes)

 Line#	Node Number	In-Invert (feet)	Out-Invert (feet)	Length (feet)	Slope (ft/ft)	n	Width (inches)	Diam/Height (inches)	Inside-Fill (inches)	Node Name
 1	1R	77.23	77.20	8.0	0.0038	0.010	0.0	18.0	0.0	
2	6R	81.00	78.20	140.0	0.0200	0.010	0.0	12.0	0.0	
3	9R	78.20	77.55	135.0	0.0048	0.010	0.0	12.0	0.0	
4	11R	78.25	78.20	3.0	0.0167	0.010	0.0	12.0	0.0	
5	12R	77.33	77.30	3.0	0.0100	0.010	0.0	15.0	0.0	
6	14R	77.58	77.55	3.0	0.0100	0.010	0.0	12.0	0.0	
7	IB#1	78.00	77.50	30.0	0.0167	0.010	0.0	8.0	0.0	
8	SSIB#1	78.30	78.19	11.0	0.0100	0.010	0.0	8.0	0.0	

KRAIL-DEV2	KING RAIL DEVELOPED STORMWATER CALCULATIONS Type III 24-hr 100 year Rainfall=6.50"
Prepared by Linden Engineering Partners HydroCAD® 10.20-3c s/n 07179 © 2023 Hydro	
Runoff by SCS TR-	.00 hrs, dt=0.01 hrs, 7201 points x 3 20 method, UH=SCS, Weighted-CN method - Pond routing by Dyn-Stor-Ind method
Subcatchment 3276S: AREA DIRECTLY Flow Length=45'	Runoff Area=6,924 sf 18.41% Impervious Runoff Depth=3.01" Slope=0.0100 '/' Tc=9.9 min CN=68 Runoff=0.49 cfs 0.040 af
Subcatchment D-1: D-1 TO CASIN	Runoff Area=5,387 sf 0.00% Impervious Runoff Depth=2.35" Flow Length=145' Tc=6.3 min CN=61 Runoff=0.33 cfs 0.024 af
Subcatchment D-2A: D-2A F	Runoff Area=47,415 sf 0.00% Impervious Runoff Depth=2.17" low Length=661' Tc=23.5 min CN=59 Runoff=1.65 cfs 0.196 af
Subcatchment D-2B: D-2B	Runoff Area=11,225 sf 0.00% Impervious Runoff Depth=6.03" Tc=6.0 min CN=96 Runoff=1.63 cfs 0.129 af
Subcatchment D-3A: Clubhouse Roof	Runoff Area=2,360 sf 100.00% Impervious Runoff Depth=6.26" Tc=6.0 min CN=98 Runoff=0.35 cfs 0.028 af
Subcatchment D-3B: Direct to IB#2	Runoff Area=810 sf 0.00% Impervious Runoff Depth=2.72" Tc=6.0 min CN=65 Runoff=0.06 cfs 0.004 af
Subcatchment D-4A: D-2 Flow Length=294'	Runoff Area=9,415 sf 68.88% Impervious Runoff Depth=4.89" Slope=0.0600 '/' Tc=6.8 min CN=86 Runoff=1.17 cfs 0.088 af
SubcatchmentD-4B: (new Subcat)	Runoff Area=10,865 sf 76.99% Impervious Runoff Depth=5.22" Tc=0.0 min CN=89 Runoff=1.78 cfs 0.109 af
Subcatchment D-4C: D-4C	Runoff Area=13,300 sf 77.44% Impervious Runoff Depth=5.33" Tc=0.0 min CN=90 Runoff=2.21 cfs 0.136 af
Subcatchment D-5: ON-SITE TO YARD CB Flow Length=50'	S Runoff Area=4,875 sf 0.00% Impervious Runoff Depth=2.35" Slope=0.0050 '/' Tc=14.3 min CN=61 Runoff=0.23 cfs 0.022 af
Subcatchment OS-2: OS-2 Flow Length=40'	Runoff Area=2,641 sf 0.00% Impervious Runoff Depth=2.35" Slope=0.0500 '/' Tc=6.0 min CN=61 Runoff=0.16 cfs 0.012 af
Subcatchment OS-3: OS-3 Flow Length=50'	Runoff Area=8,426 sf 5.93% Impervious Runoff Depth=2.53" Slope=0.1100 '/' Tc=6.0 min CN=63 Runoff=0.56 cfs 0.041 af
Subcatchment OS-4: OS-4 Flow Length=44'	Runoff Area=8,385 sf 8.35% Impervious Runoff Depth=2.63" Slope=0.0400 '/' Tc=6.0 min CN=64 Runoff=0.58 cfs 0.042 af
Subcatchment OS-5: OS-5 Flow Length=46'	Runoff Area=4,795 sf 0.00% Impervious Runoff Depth=2.35" Slope=0.0400 '/' Tc=6.0 min CN=61 Runoff=0.29 cfs 0.022 af
Reach 16R: FLOW THRIOUGH NEW 18" PI	PE Inflow=5.50 cfs 0.422 af Outflow=5.50 cfs 0.422 af
Reach 3269R: DIRECT FLOW TO RM	Inflow=7.59 cfs 0.807 af Outflow=7.59 cfs 0.807 af

Type III 24-hr 100 year Rainfall=6.50"

Prepared by Linden Engineering Partners, LLC HydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC			Page 9
Reach 3274R: YARD CBS TO PICKUP FLOW FROM LIFE Inflow=1.75 cfs			
		Outflow=1.75 cfs	0.138 af
Reach 3275R: TOTAL FLOW FROM WORK AREA Inflow=7.91 cfs		0.831 af	
		Outflow=7.91 cfs	0.831 af
Pond 1R: CASCADE-SSIB#1	Peak Elev=79.41'	Inflow=4.68 cfs	0.332 af
	18.0" Round Culvert n=0.010 L=8.0' S=0.0038 '/'	Outflow=4.68 cfs	0.332 af
Pond 6R: DCB#1-DMH#1	Peak Elev=81.56'	Inflow=1.17 cfs	0.088 af
	12.0" Round Culvert n=0.010 L=140.0' S=0.0200 '/'	Outflow=1.17 cfs	0.088 af
Pond 9R: DMH#1-DMH#2	Peak Elev=80.56'	Inflow=2.47 cfs	0.197 af

- Pond 9R: DMH#1-DMH#2
 Peak Elev=80.56'
 Inflow=2.47 cfs
 0.197 af

 12.0"
 Round Culvert
 n=0.010
 L=135.0'
 S=0.0048 '/'
 Outflow=2.47 cfs
 0.197 af
- Pond 11R: DCB#2 DMH#1
 Peak Elev=80.76'
 Inflow=1.78 cfs
 0.109 af

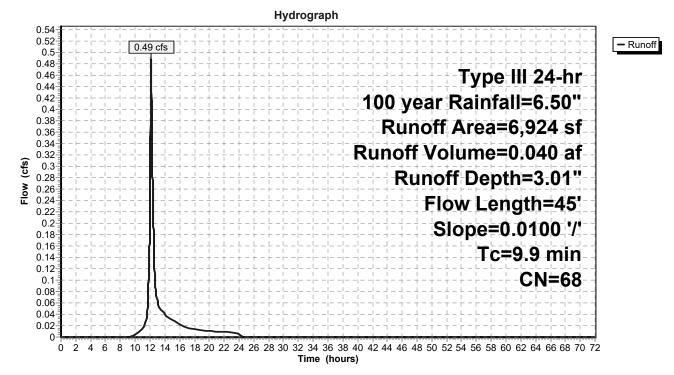
 12.0"
 Round Culvert n=0.010
 L=3.0'
 S=0.0167 '/'
 Outflow=1.78 cfs
 0.109 af
- Pond 12R: DMH#2-CASCADE
 Peak Elev=79.99'
 Inflow=4.68 cfs
 0.332 af

 15.0"
 Round Culvert n=0.010
 L=3.0'
 S=0.0100 '/'
 Outflow=4.68 cfs
 0.332 af
- Pond 14R: DCB#3-DMH#2
 Peak Elev=80.29'
 Inflow=2.21 cfs
 0.136 af

 12.0"
 Round Culvert n=0.010
 L=3.0'
 S=0.0100 '/'
 Outflow=2.21 cfs
 0.136 af
- Pond IB#1: NEW IB#1
 Peak Elev=78.88' Storage=1,993 cf Inflow=2.30 cfs 0.326 af 8.0" Round Culvert x 2.00 n=0.010 L=30.0' S=0.0167 '/' Outflow=1.96 cfs 0.313 af
- Pond IB#2: IB#2
 Peak Elev=77.00' Storage=0 cf Inflow=0.40 cfs 0.032 af Outflow=0.40 cfs 0.032 af
- Pond SSIB#1: SSIB#1
 Peak Elev=79.18' Storage=3,019 cf Inflow=4.68 cfs 0.332 af 8.0" Round Culvert x 4.00 n=0.010 L=11.0' S=0.0100 '/' Outflow=3.93 cfs 0.284 af

Total Runoff Area = 3.141 acRunoff Volume = 0.893 afAverage Runoff Depth = 3.41"78.08% Pervious = 2.453 ac21.92% Impervious = 0.688 ac

KRAIL-DEV2

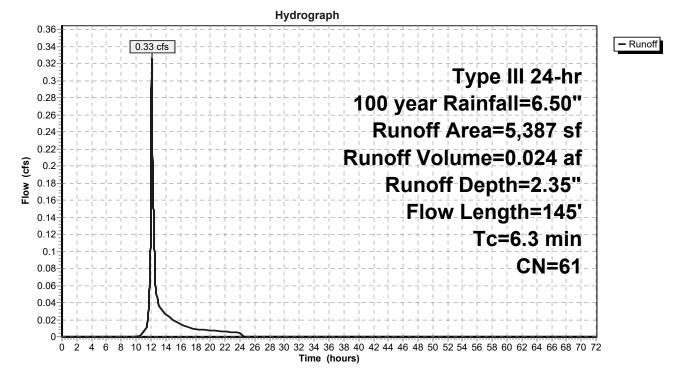

Summary for Subcatchment 3276S: AREA DIRECTLY TRIBUTARY TO RM

Runoff = 0.49 cfs @ 12.14 hrs, Volume= 0.040 af, Depth= 3.01" Routed to Reach 3269R : DIRECT FLOW TO RM

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100 year Rainfall=6.50"

Α	rea (sf)	CN	Description									
	5,649	61	>75% Gras	75% Grass cover, Good, HSG B								
	600	98	Paved road	Paved roads w/curbs & sewers, HSG B								
	175	98	Water Surfa	ace, HSG B	6							
	500	98	Paved park	ing, HSG B								
	6,924	68	8 Weighted Average									
	5,649		81.59% Pervious Area									
	1,275		18.41% Impervious Area									
Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description							
9.9	45	0.0100	0.08		Sheet Flow, Grass: Dense	n= 0.240	P2= 3.20"					

Subcatchment 3276S: AREA DIRECTLY TRIBUTARY TO RM


Summary for Subcatchment D-1: D-1 TO CASIN

Runoff = 0.33 cfs @ 12.10 hrs, Volume= 0.024 af, Depth= 2.35" Routed to Reach 3275R : TOTAL FLOW FROM WORK AREA

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100 year Rainfall=6.50"

 А	rea (sf)	CN I	Description									
	5,387	7 61 >75% Grass cover, Good, HSG B										
	5,387		100.00% Pervious Area									
Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description							
 5.3	50	0.0600	0.16		Sheet Flow, 50							
1.0	87	0.0600	1.47		Grass: Dense n= 0.240 P2= 3.20" Shallow Concentrated Flow, Kv= 6.0 fps							
 0.0	8	0.5000	4.24		Shallow Concentrated Flow, Kv= 6.0 fps							
6.3	145	Total										

Subcatchment D-1: D-1 TO CASIN

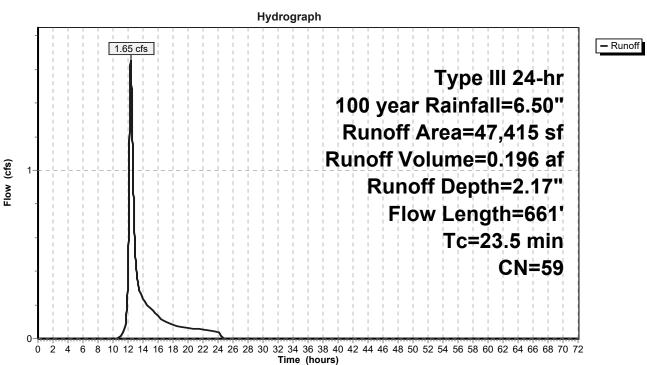
Type III 24-hr 100 year Rainfall=6.50"

Prepared by Linden Engineering Partners, LLC HydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC

Page 12

Summary for Subcatchment D-2A: D-2A

Runoff = 1.65 cfs @ 12.35 hrs, Volume= 0.196 af, Depth= 2.17" Routed to Pond IB#1 : NEW IB#1


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100 year Rainfall=6.50"

Α	rea (sf)	CN D	escription								
	4,200	56 B	rush, Fair,	HSG B							
	30,622	58 N	leadow, no	on-grazed,	HSG B						
	12,593	61 >	1 >75% Grass cover, Good, HSG B								
	47,415	59 V									
	47,415	1	100.00% Pervious Area								
Tc	Length	Slope	Velocity	Capacity	Description						
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)							
7.0	50	0.0300	0.12		Sheet Flow,						
					Grass: Dense n= 0.240 P2= 3.20"						
2.4	150	0.0300	1.04		Shallow Concentrated Flow,						
					Kv= 6.0 fps						
1.4	50	0.0100	0.60		Shallow Concentrated Flow,						
					Kv= 6.0 fps						
10.4	264	0.0050	0.42		Shallow Concentrated Flow,						
					Kv= 6.0 fps						
2.3	147	0.0050	1.06		Shallow Concentrated Flow,						
					Grassed Waterway Kv= 15.0 fps						
23.5	661	Total									

KRAIL-DEV2

KING RAIL DEVELOPED STORMWATER CALCULATIONS Type III 24-hr 100 year Rainfall=6.50"

Prepared by Linden Engineering Partners, LLC HydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC

Subcatchment D-2A: D-2A

KRAIL-DEV2

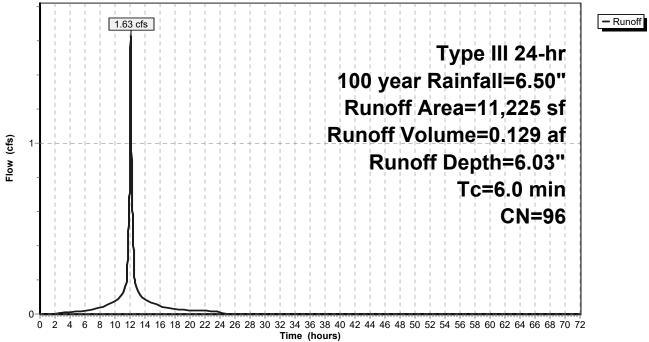
Page 13

Type III 24-hr 100 year Rainfall=6.50"

Prepared by Linden Engineering Partners, LLC HydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC

Page 14

Summary for Subcatchment D-2B: D-2B

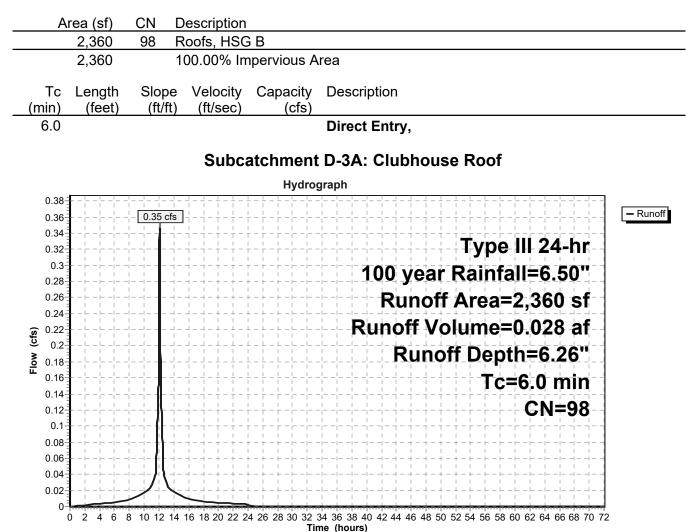

Runoff = 1.63 cfs @ 12.08 hrs, Volume= 0.129 af, Depth= 6.03" Routed to Pond IB#1 : NEW IB#1

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100 year Rainfall=6.50"

A	rea (sf)	CN	Description						
	8,200	96	Gravel surface, HSG B						
	3,025	96	Gravel surface, HSG B						
	11,225	96	96 Weighted Average						
	11,225		100.00% Pervious Area						
Тс	Longth	Slope	e Velocity	Capacity	Description				
(min)	Length (feet)	(ft/ft)		(cfs)	Description				
	(ieet)	וויונ	(11/360)	(013)	Direct Future				
6.0					Direct Entry,				

Subcatchment D-2B: D-2B

Hydrograph



KRAIL-DEV2

Summary for Subcatchment D-3A: Clubhouse Roof

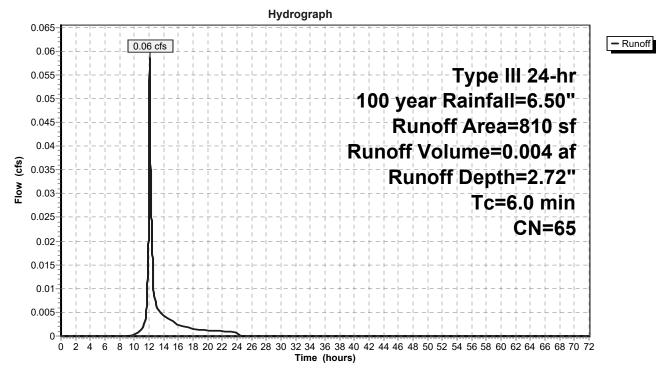
Runoff = 0.35 cfs @ 12.08 hrs, Volume= 0.028 af, Depth= 6.26" Routed to Pond IB#2 : IB#2

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100 year Rainfall=6.50"

Type III 24-hr 100 year Rainfall=6.50"

Prepared by Linden Engineering Partners, LLC HydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC

Page 16


Summary for Subcatchment D-3B: Direct to IB#2

Runoff = 0.06 cfs @ 12.09 hrs, Volume= 0.004 af, Depth= 2.72" Routed to Pond IB#2 : IB#2

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100 year Rainfall=6.50"

Α	rea (sf)	CN	Description								
	180	79	<50% Grass cover, Poor, HSG B								
	630	61	>75% Grass cover, Good, HSG B								
	810	65	Weighted Average								
	810		100.00% Pervious Area								
Tc (min)	Length (feet)	Slope (ft/ft	,	Capacity (cfs)	Description						
6.0					Direct Entry,						

Subcatchment D-3B: Direct to IB#2

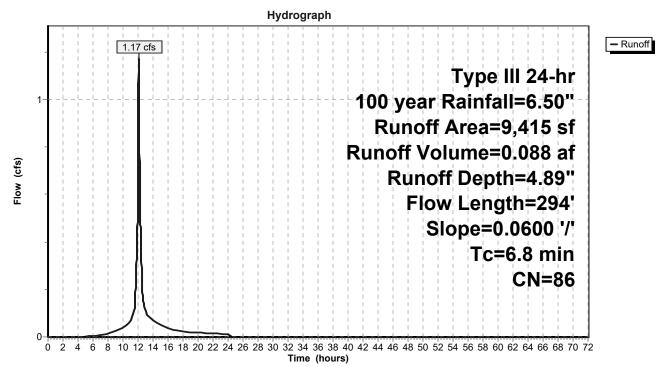
Type III 24-hr 100 year Rainfall=6.50"

Prepared by Linden Engineering Partners, LLC HydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC

Page 17

Summary for Subcatchment D-4A: D-2

Runoff = 1.17 cfs @ 12.10 hrs, Volume= 0.08 Routed to Pond 6R : DCB#1- DMH#1


0.088 af, Depth= 4.89"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100 year Rainfall=6.50"

_	A	rea (sf)	CN E	Description									
		6,485	98 F	Paved park	ing, HSG E	3							
_		2,930	61 >	>75% Grass cover, Good, HSG B									
		9,415	86 V	0 0									
		2,930	3	31.12% Pervious Area									
		6,485	6,485 68.88% Impervious Area										
	_												
	Tc	Length	Slope	Velocity	Capacity	Description							
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)								
	5.3	50	0.0600	0.16		Sheet Flow,							
						Grass: Dense n= 0.240 P2= 3.20"							
	1.0	90	0.0600	1.47		Shallow Concentrated Flow,							
						Kv= 6.0 fps							
	0.5	154	0.0600	4.97		Shallow Concentrated Flow,							
						Paved Kv= 20.3 fps							
	6.0	204	Tatal										

6.8 294 Total

Subcatchment D-4A: D-2

KRAIL-DEV2

Summary for Subcatchment D-4B: (new Subcat)

Runoff = 1.78 cfs @ 12.00 hrs, Volume= 0.109 a Routed to Pond 11R : DCB#2 - DMH#1

0.109 af, Depth= 5.22"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100 year Rainfall=6.50"

Area (sf)	CN	Description
8,365	98	Paved parking, HSG B
2,500	61	>75% Grass cover, Good, HSG B
10,865	89	Weighted Average
2,500		23.01% Pervious Area
8,365		76.99% Impervious Area

Subcatchment D-4B: (new Subcat)

(9) OF Type III 24-hr 100 year Rainfall=6.50" Runoff Area=10,865 sf Runoff Depth=5.22" Tc=0.0 min CN=89 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 Tre (hours)

Summary for Subcatchment D-4C: D-4C

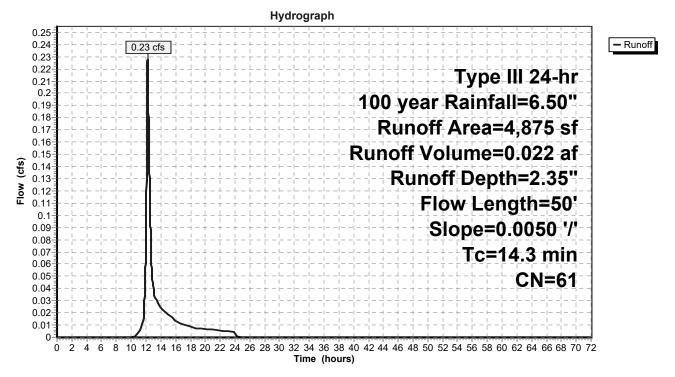
Runoff = 2.21 cfs @ 12.00 hrs, Volume= 0.136 af, Depth= 5.33" Routed to Pond 14R : DCB#3-DMH#2

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100 year Rainfall=6.50"

Are	ea (sf)	CN	Description
1	0,300	98	Paved roads w/curbs & sewers, HSG B
	3,000	61	>75% Grass cover, Good, HSG B
1	3,300	90	Weighted Average
	3,000		22.56% Pervious Area
1	0,300		77.44% Impervious Area

Subcatchment D-4C: D-4C

Hydrograph 2.21 cfs - Runoff Type III 24-hr 2-100 year Rainfall=6.50" Runoff Area=13,300 sf Runoff Volume=0.136 af Flow (cfs) Runoff Depth=5.33" Tc=0.0 min 1 **CN=90** 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 Ó Time (hours)


Summary for Subcatchment D-5: ON-SITE TO YARD CBS

Runoff = 0.23 cfs @ 12.21 hrs, Volume= 0.022 af, Depth= 2.35" Routed to Reach 3274R : YARD CBS TO PICKUP FLOW FROM LIFE

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100 year Rainfall=6.50"

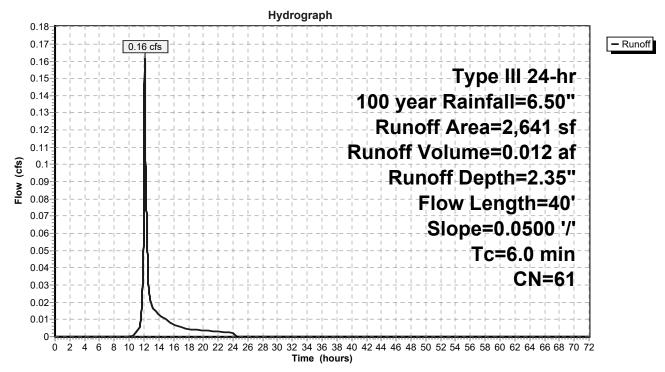
Α	rea (sf)	CN [Description									
	4,875	61 >	61 >75% Grass cover, Good, HSG B									
	4,875		100.00% Pervious Area									
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description							
14.3	50	0.0050	0.06		Sheet Flow, Grass: Dense	n= 0.240	P2= 3.20"					

Subcatchment D-5: ON-SITE TO YARD CBS

Type III 24-hr 100 year Rainfall=6.50"

Prepared by Linden Engineering Partners, LLC HydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC

Page 21


Summary for Subcatchment OS-2: OS-2

Runoff = 0.16 cfs @ 12.09 hrs, Volume= 0.012 af, Depth= 2.35" Routed to Reach 3274R : YARD CBS TO PICKUP FLOW FROM LIFE

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100 year Rainfall=6.50"

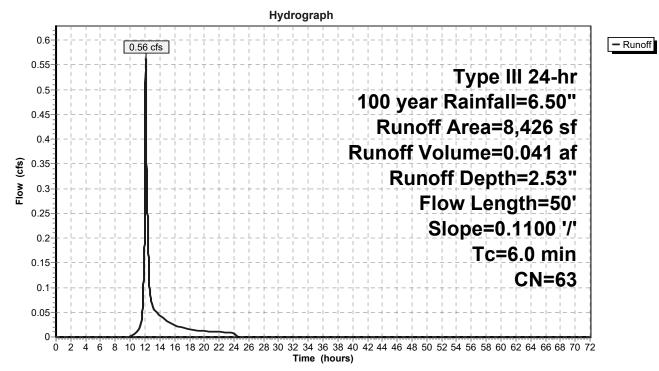
_	А	rea (sf)	CN I	Description									
		2,641	61 :	61 >75% Grass cover, Good, HSG B									
	2,641 100.00% Pervious Area												
	Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description							
	4.8	40	0.0500	0.14		Sheet Flow, Grass: Dense	n = 0.240	D2- 2 20"					
-	4.8	40	Total.	Increased t	o minimum	Tc = 6.0 min	11- 0.240	FZ- 3.20					

Subcatchment OS-2: OS-2

Type III 24-hr 100 year Rainfall=6.50"

Prepared by Linden Engineering Partners, LLC HydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC

Page 22


Summary for Subcatchment OS-3: OS-3

Runoff = 0.56 cfs @ 12.09 hrs, Volume= 0.041 af, Depth= 2.53" Routed to Reach 3274R : YARD CBS TO PICKUP FLOW FROM LIFE

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100 year Rainfall=6.50"

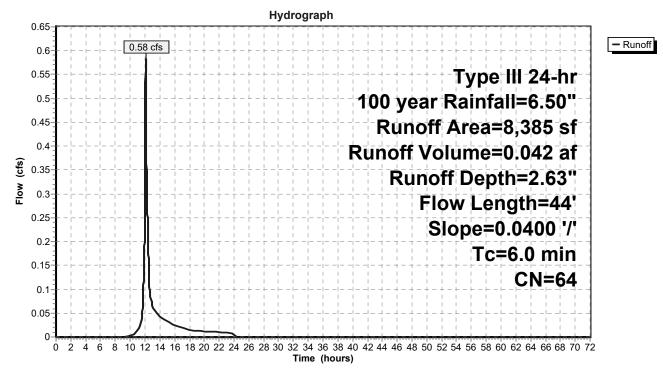
Α	rea (sf)	CN [Description									
	500	98 F	98 Paved parking, HSG B									
	7,926	61 >	75% Gras	s cover, Go	ood, HSG B							
	8,426	63 V	3 Weighted Average									
	7,926	ç	94.07% Pervious Area									
	500	5	5.93% Impervious Area									
Tc	Length	Slope	Velocity	Capacity	Description							
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)								
4.1	50	0.1100	0.20		Sheet Flow,							
					Grass: Dense	n= 0.240	P2= 3.20"					
4.1	50	Total, I	ncreased t	o minimum	Tc = 6.0 min							

Subcatchment OS-3: OS-3

Type III 24-hr 100 year Rainfall=6.50"

Prepared by Linden Engineering Partners, LLC HydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC

Page 23


Summary for Subcatchment OS-4: OS-4

Runoff = 0.58 cfs @ 12.09 hrs, Volume= 0.042 af, Depth= 2.63" Routed to Reach 3274R : YARD CBS TO PICKUP FLOW FROM LIFE

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100 year Rainfall=6.50"

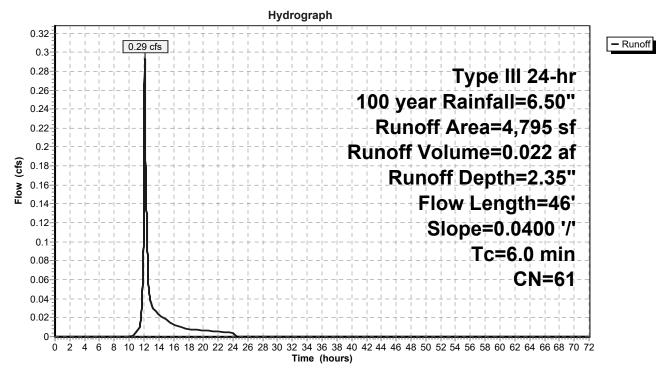
Α	rea (sf)	CN E	Description								
	700	98 F	98 Paved parking, HSG B								
	7,685	61 >	75% Gras	s cover, Go	ood, HSG B						
	8,385	64 V	04 Weighted Average								
	7,685	g	91.65% Pervious Area								
	700	8	8.35% Impervious Area								
_											
Тс	Length	Slope	Velocity	Capacity	Description						
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)							
5.6	44	0.0400	0.13		Sheet Flow,						
					Grass: Dense n= 0.240 P2= 3.20"						
5.6	44	Total, I	ncreased t	o minimum	Tc = 6.0 min						

Subcatchment OS-4: OS-4

Type III 24-hr 100 year Rainfall=6.50"

Prepared by Linden Engineering Partners, LLC HydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC

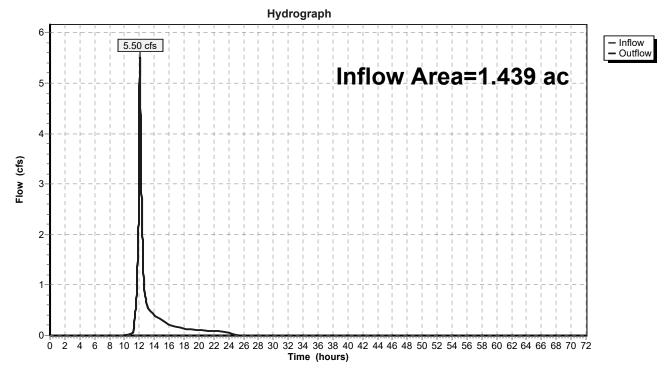
Page 24


Summary for Subcatchment OS-5: OS-5

Runoff = 0.29 cfs @ 12.09 hrs, Volume= 0.022 af, Depth= 2.35" Routed to Reach 3274R : YARD CBS TO PICKUP FLOW FROM LIFE

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100 year Rainfall=6.50"

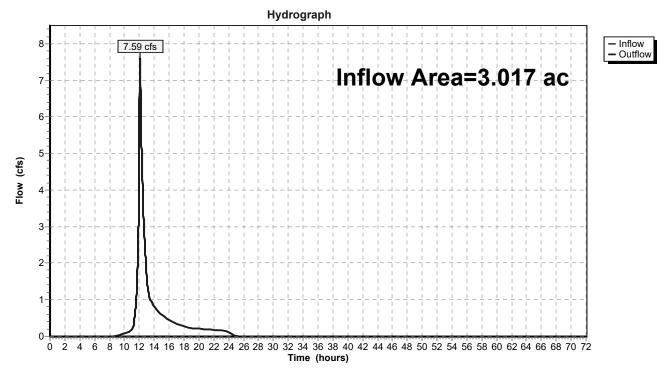
_	A	rea (sf)	CN I	Description						
		4,795	61 >	61 >75% Grass cover, Good, HSG B						
		4,795		100.00% Pe	ervious Are	а				
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
_	5.8	46	0.0400	0.13		Sheet Flow, Grass: Dense	n= 0.240	P2= 3.20"		
_	5.8	46	Total,	Increased t	o minimum	Tc = 6.0 min				


Subcatchment OS-5: OS-5

Summary for Reach 16R: FLOW THRIOUGH NEW 18" PIPE

Inflow Area =	1.439 ac, 42.02% Impervious, Inflow	Depth = 3.52" for 100 year event
Inflow =	5.50 cfs @ 12.07 hrs, Volume=	0.422 af
Outflow =	5.50 cfs @ 12.07 hrs, Volume=	0.422 af, Atten= 0%, Lag= 0.0 min
Routed to Read	ch 3269R : DIRECT FLOW TO RM	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3

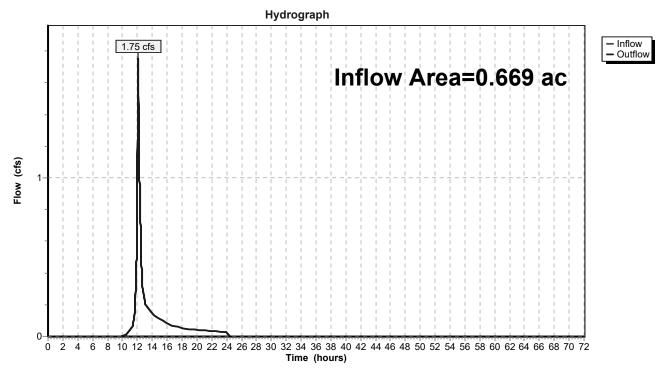


Reach 16R: FLOW THRIOUGH NEW 18" PIPE

Summary for Reach 3269R: DIRECT FLOW TO RM

Inflow Area = 3.017 ac, 22.81% Impervious, Inflow Depth = 3.21" for 100 year event Inflow = 7.59 cfs @ 12.09 hrs, Volume= 0.807 af Outflow = 7.59 cfs @ 12.09 hrs, Volume= 0.807 af, Atten= 0%, Lag= 0.0 min Routed to Reach 3275R : TOTAL FLOW FROM WORK AREA

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3

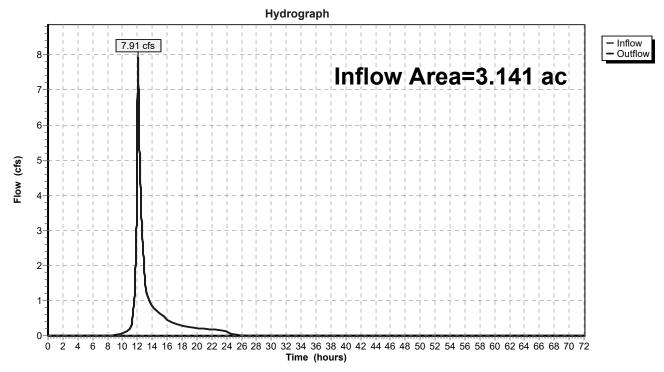


Reach 3269R: DIRECT FLOW TO RM

Summary for Reach 3274R: YARD CBS TO PICKUP FLOW FROM LIFE

Inflow Area = 0.669 ac, 4.12% Impervious, Inflow Depth = 2.48" for 100 year event Inflow = 1.75 cfs @ 12.10 hrs, Volume= 0.138 af Outflow = 1.75 cfs @ 12.10 hrs, Volume= 0.138 af, Atten= 0%, Lag= 0.0 min Routed to Reach 16R : FLOW THRIOUGH NEW 18" PIPE

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3


Reach 3274R: YARD CBS TO PICKUP FLOW FROM LIFE

Summary for Reach 3275R: TOTAL FLOW FROM WORK AREA

Inflow Are	a =	3.141 ac, 21.92% Impervious, Inflow Depth = 3.18" for 100 year event
Inflow	=	7.91 cfs @ 12.09 hrs, Volume= 0.831 af
Outflow	=	7.91 cfs @ 12.09 hrs, Volume= 0.831 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3

Reach 3275R: TOTAL FLOW FROM WORK AREA

KRAIL-DEV2 Prepared by Linden Engineering Partners, LLC HydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC

Summary for Pond 1R: CASCADE-SSIB#1

Inflow Area = 0.771 ac, 74.90% Impervious, Inflow Depth = 5.17" for 100 year event Inflow 4.68 cfs @ 12.00 hrs, Volume= 0.332 af = 4.68 cfs @ 12.00 hrs, Volume= Outflow 0.332 af, Atten= 0%, Lag= 0.0 min = Primary = 4.68 cfs @ 12.00 hrs, Volume= 0.332 af Routed to Pond SSIB#1 : SSIB#1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 79.41' @ 12.03 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	77.23'	18.0" Round Culvert L= 8.0' Square-edged headwall, Ke= 0.500 Inlet / Outlet Invert= 77.23' / 77.20' S= 0.0038 '/' Cc= 0.900 n= 0.010, Flow Area= 1.77 sf

Primary OutFlow Max=4.65 cfs @ 12.00 hrs HW=79.36' TW=79.07' (Dynamic Tailwater) 1=Culvert (Inlet Controls 4.65 cfs @ 2.63 fps)

Hydrograph 5 - Inflow 4.68 cfs - Primary Inflow Area=0.771 ac 4 Peak Elev=79.41' 18.0" 3 Flow (cfs) Round Culvert n=0.010 2 L=8.0' S=0.0038 '/' 1 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 Time (hours)

Pond 1R: CASCADE-SSIB#1

Page 29

KING RAIL DEVELOPED STORMWATER CALCULATIONS

Type III 24-hr 100 year Rainfall=6.50"

Prepared by Linden Engineering Partners, LLC HydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC

Page 30

Stage-Discharge for Pond 1R: CASCADE-SSIB#1

Elevation Prima		Primary	Elevation	Primary
(feet) (cf		(cfs)	(feet)	(cfs)
77.23 0.0		3.19	79.31	8.79
77.25 0.0		3.30	79.33	8.94
77.27 0.0		3.40	79.35	9.08
77.29 0.0		3.51	79.37	9.22
77.31 0.0		3.62	79.39	9.35
77.33 0.0		3.73	79.41	9.49
77.35 0.0	78.39	3.84		
77.37 0.0	78.41	3.95		
77.39 0.0	78.43	4.07		
77.41 0.1	12 78.45	4.18		
77.43 0.1	15 78.47	4.29		
77.45 0.1	18 78.49	4.41		
77.47 0.2		4.52		
77.49 0.2		4.64		
77.51 0.2		4.75		
77.53 0.3		4.87		
77.55 0.3		4.99		
77.57 0.4		5.10		
77.59 0.4		5.22		
77.61 0.5		5.33		
77.63 0.5		5.45		
77.65 0.6		5.57		
77.67 0.6		5.68		
77.69 0.7		5.80		
77.71 0.7		5.91		
77.73 0.8		6.03		
77.75 0.9		6.14		
77.77 0.9		6.26		
77.79 1.0		6.37		
77.81 1.1		6.48		
77.83 1.1		6.60		
77.85 1.2		6.71		
77.87 1.3		6.82		
77.89 1.4		6.92		
77.91 1.4		7.03		
77.93 1.5		7.13		
77.95 1.6		7.13		
77.97 1.7		7.34		
77.99 1.8		7.44		
78.01 1.9		7.53		
78.03 2.0		7.63		
78.05 2.1		7.72		
78.07 2.1		7.80		
78.09 2.2		7.89		
78.11 2.3		7.97		
78.13 2.4		8.04		
78.15 2.5		8.10		
78.17 2.6		8.16		
78.19 2.7		8.20		
78.21 2.8		8.35		
78.23 2.9		8.50		
78.25 3.0		8.65		
		0.00	I	

Prepared by Linden Engineering Partners, LLC HydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC

Page 31

Stage-Area-Storage for Pond 1R: CASCADE-SSIB#1

Elevation	Storage	Elevation	Storage	Elevation	Storage
(feet)	(acre-feet)	(feet)	(acre-feet)	(feet)	(acre-feet)
77.23	0.000	78.27	0.000	79.31	0.000
77.25	0.000	78.29	0.000	79.33	0.000
77.27	0.000	78.31	0.000	79.35	0.000
77.29	0.000	78.33	0.000	79.37	0.000
77.31	0.000	78.35	0.000	79.39	0.000
77.33	0.000	78.37	0.000	79.41	0.000
77.35	0.000	78.39	0.000		
77.37	0.000	78.41	0.000		
77.39	0.000	78.43	0.000		
77.41	0.000	78.45	0.000		
77.43	0.000	78.47	0.000		
77.45	0.000	78.49	0.000		
77.47	0.000	78.51	0.000		
77.49	0.000	78.53	0.000		
77.51	0.000	78.55	0.000		
77.53	0.000	78.57	0.000		
77.55	0.000	78.59	0.000		
77.57	0.000	78.61	0.000		
77.59	0.000	78.63	0.000		
77.61	0.000	78.65	0.000		
77.63 77.65	0.000 0.000	78.67 78.69	0.000 0.000		
77.67	0.000	78.71	0.000		
77.69	0.000	78.73	0.000		
77.71	0.000	78.75	0.000		
77.73	0.000	78.77	0.000		
77.75	0.000	78.79	0.000		
77.77	0.000	78.81	0.000		
77.79	0.000	78.83	0.000		
77.81	0.000	78.85	0.000		
77.83	0.000	78.87	0.000		
77.85	0.000	78.89	0.000		
77.87	0.000	78.91	0.000		
77.89	0.000	78.93	0.000		
77.91	0.000	78.95	0.000		
77.93	0.000	78.97	0.000		
77.95	0.000	78.99	0.000		
77.97	0.000	79.01	0.000		
77.99	0.000	79.03	0.000		
78.01	0.000	79.05	0.000		
78.03	0.000	79.07	0.000		
78.05	0.000	79.09	0.000		
78.07	0.000	79.11	0.000		
78.09	0.000	79.13	0.000		
78.11	0.000	79.15	0.000		
78.13	0.000	79.17	0.000		
78.15	0.000	79.19 79.21	0.000		
78.17 78.19	0.000 0.000	79.21	0.000 0.000		
78.21	0.000	79.23	0.000		
78.23	0.000	79.25	0.000		
78.25	0.000	79.27	0.000		
	0.000		0.000	I	

KING RAIL DEVELOPED STORMWATER CALCULATIONS Type III 24-hr 100 year Rainfall=6.50" **KRAIL-DEV2** Prepared by Linden Engineering Partners, LLC HydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC

Summary for Pond 6R: DCB#1- DMH#1

Inflow Area = 0.216 ac, 68.88% Impervious, Inflow Depth = 4.89" for 100 year event Inflow 1.17 cfs @ 12.10 hrs, Volume= = 0.088 af 1.17 cfs @ 12.10 hrs, Volume= Outflow 0.088 af, Atten= 0%, Lag= 0.0 min = 1.17 cfs @ 12.10 hrs, Volume= Primary = 0.088 af Routed to Pond 9R : DMH#1-DMH#2

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 81.56' @ 12.10 hrs

#1 Primary 81.00' 12.0'' Round Culvert L= 140.0' Square-edged headwall, Ke= 0.500 Inlet / Outlet Invert= 81.00' / 78.20' S= 0.0200 '/' Cc= 0.900 n= 0.010, Flow Area= 0.79 sf	

Primary OutFlow Max=1.17 cfs @ 12.10 hrs HW=81.56' TW=79.85' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 1.17 cfs @ 2.56 fps)

Hydrograph 1.17 cfs - Inflow - Primary Inflow Area=0.216 ac 1 Peak Elev=81.56' 12.0" Flow (cfs) **Round Culvert** n=0.010 L=140.0' S=0.0200 '/' 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 0 Time (hours)

Pond 6R: DCB#1- DMH#1

Page 32

KING RAIL DEVELOPED STORMWATER CALCULATIONS

Type III 24-hr 100 year Rainfall=6.50"

Prepared by Linden Engineering Partners, LLC HydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC

Stage-Discharge for Pond 6R: DCB#1- DMH#1

Elevation	Primary	Elevation	Primary
(feet)	(cfs)	(feet)	(cfs)
81.00	0.00	81.52	1.01
81.01	0.00	81.53	1.05
81.02	0.00	81.54	1.08
81.03	0.00	81.55	1.12
81.04 81.05	0.01 0.01	81.56 81.57	1.15 1.19
81.06	0.01	81.57	1.19
81.07	0.02	81.59	1.26
81.08	0.03	81.60	1.30
81.09	0.04	81.61	1.33
81.10	0.04	81.62	1.37
81.11	0.05	81.63	1.41
81.12	0.06	81.64	1.45
81.13	0.07	81.65	1.48
81.14	0.09	81.66	1.52
81.15 81.16	0.10 0.11	81.67 81.68	1.56
81.17	0.11	81.69	1.60 1.63
81.18	0.12	81.70	1.67
81.19	0.15	81.71	1.71
81.20	0.17	81.72	1.75
81.21	0.19	81.73	1.79
81.22	0.20	81.74	1.83
81.23	0.22	81.75	1.86
81.24	0.24	81.76	1.90
81.25	0.26	81.77	1.94
81.26 81.27	0.28 0.30	81.78 81.79	1.98 2.01
81.28	0.32	81.80	2.01
81.29	0.35	81.81	2.09
81.30	0.37	81.82	2.13
81.31	0.39	81.83	2.16
81.32	0.42	81.84	2.20
81.33	0.44	81.85	2.23
81.34	0.47	81.86	2.27
81.35	0.49 0.52	81.87	2.30
81.36 81.37	0.52	81.88 81.89	2.34 2.37
81.38	0.57	81.90	2.40
81.39	0.60	81.91	2.44
81.40	0.63	81.92	2.47
81.41	0.66	81.93	2.50
81.42	0.69	81.94	2.53
81.43	0.72	81.95	2.56
81.44	0.75	81.96	2.58
81.45	0.78	81.97	2.61
81.46 81.47	0.81 0.85	81.98 81.99	2.63 2.66
81.48	0.85	82.00	2.00 2.67
81.49	0.91	52.00	2.07
81.50	0.95		
81.51	0.98		
		I	

KING RAIL DEVELOPED STORMWATER CALCULATIONS

Type III 24-hr 100 year Rainfall=6.50"

Prepared by Linden Engineering Partners, LLC HydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond 6R: DCB#1- DMH#1

Elevation	Storage	Elevation	Storage
(feet)	(acre-feet)	(feet)	(acre-feet)
81.00	0.000	81.52	0.000
81.01	0.000	81.53	0.000
81.02	0.000	81.54	0.000
81.03	0.000	81.55	0.000
81.04	0.000	81.56	0.000
81.05	0.000	81.57	0.000
81.06 81.07	0.000	81.58 81.59	0.000 0.000
81.08	0.000 0.000	81.60	0.000
81.09	0.000	81.60	0.000
81.10	0.000	81.62	0.000
81.11	0.000	81.63	0.000
81.12	0.000	81.64	0.000
81.13	0.000	81.65	0.000
81.14	0.000	81.66	0.000
81.15	0.000	81.67	0.000
81.16	0.000	81.68	0.000
81.17	0.000	81.69	0.000
81.18	0.000	81.70	0.000
81.19	0.000	81.71	0.000
81.20	0.000	81.72	0.000
81.21	0.000	81.73	0.000
81.22	0.000	81.74	0.000
81.23 81.24	0.000 0.000	81.75 81.76	0.000 0.000
81.25	0.000	81.70	0.000
81.26	0.000	81.78	0.000
81.27	0.000	81.79	0.000
81.28	0.000	81.80	0.000
81.29	0.000	81.81	0.000
81.30	0.000	81.82	0.000
81.31	0.000	81.83	0.000
81.32	0.000	81.84	0.000
81.33	0.000	81.85	0.000
81.34	0.000	81.86	0.000
81.35	0.000	81.87	0.000
81.36	0.000	81.88	0.000
81.37	0.000	81.89	0.000
81.38 81.39	0.000 0.000	81.90 81.91	0.000 0.000
81.40	0.000	81.92	0.000
81.41	0.000	81.93	0.000
81.42	0.000	81.94	0.000
81.43	0.000	81.95	0.000
81.44	0.000	81.96	0.000
81.45	0.000	81.97	0.000
81.46	0.000	81.98	0.000
81.47	0.000	81.99	0.000
81.48	0.000	82.00	0.000
81.49	0.000		
81.50 81.51	0.000		
16.10	0.000		

KING RAIL DEVELOPED STORMWATER CALCULATIONS Type III 24-hr 100 year Rainfall=6.50" **KRAIL-DEV2** Prepared by Linden Engineering Partners, LLC HydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC

Summary for Pond 9R: DMH#1-DMH#2

Inflow Area = 0.466 ac, 73.22% Impervious, Inflow Depth = 5.07" for 100 year event Inflow 2.47 cfs @ 12.00 hrs, Volume= 0.197 af = 2.47 cfs @ 12.00 hrs, Volume= Outflow 0.197 af, Atten= 0%, Lag= 0.0 min = 2.47 cfs @ 12.00 hrs, Volume= Primary = 0.197 af Routed to Pond 12R : DMH#2-CASCADE

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 80.56' @ 12.00 hrs

Device Routing Invert Outlet Devices	
#1 Primary 78.20' 12.0'' Round Culvert L= 135.0' Square-edged headwall, Ke= 0.500 Inlet / Outlet Invert= 78.20' / 77.55' S= 0.0048 '/' Cc= 0.900 n= 0.010, Flow Area= 0.79 sf	

Primary OutFlow Max=2.34 cfs @ 12.00 hrs HW=80.54' TW=79.98' (Dynamic Tailwater) -1=Culvert (Outlet Controls 2.34 cfs @ 2.98 fps)

Hydrograph 2.47 cfs Inflow - Primary Inflow Area=0.466 ac Peak Elev=80.56' 2 12.0" Flow (cfs) **Round Culvert** n=0.010 L=135.0' S=0.0048 '/' 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 0

Time (hours)

Pond 9R: DMH#1-DMH#2

Page 35

KING RAIL DEVELOPED STORMWATER CALCULATIONS

Type III 24-hr 100 year Rainfall=6.50"

Prepared by Linden Engineering Partners, LLC HydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC

Page 36

Stage-Discharge for Pond 9R: DMH#1-DMH#2

Elevation	Primary	Elevation	Primary	Elevation	Primary
(feet)	(cfs)	(feet)	(cfs)	(feet)	(cfs)
78.20	0.00	79.24	2.71	80.28	4.14
78.22	0.00	79.26	2.77	80.30	4.16
78.24	0.01	79.28	2.83	80.32	4.19
78.26	0.01	79.30	2.89	80.34	4.21
78.28	0.02	79.32	2.94	80.36	4.24
78.30	0.04	79.34	2.99	80.38	4.26
78.32 78.34	0.05	79.36 79.38	3.04	80.40	4.28 4.31
78.34 78.36	0.07 0.10	79.38	3.08 3.12	80.42 80.44	4.31
78.38	0.10	79.40	3.12	80.44	4.35
78.40	0.12	79.42	3.18	80.48	4.37
78.42	0.18	79.46	3.20	80.50	4.40
78.44	0.22	79.48	3.22	80.52	4.42
78.46	0.25	79.50	3.22	80.54	4.44
78.48	0.29	79.52	3.19	80.56	4.46
78.50	0.34	79.54	3.13	80.58	4.49
78.52	0.38	79.56	3.16	80.60	4.51
78.54	0.43	79.58	3.20		
78.56	0.48	79.60	3.23		
78.58	0.53	79.62	3.26		
78.60	0.58	79.64	3.29		
78.62 78.64	0.63 0.69	79.66 79.68	3.32 3.35		
78.66	0.09	79.08	3.35		
78.68	0.75	79.72	3.41		
78.70	0.87	79.74	3.43		
78.72	0.93	79.76	3.46		
78.74	0.99	79.78	3.49		
78.76	1.06	79.80	3.52		
78.78	1.13	79.82	3.55		
78.80	1.19	79.84	3.58		
78.82	1.26	79.86	3.60		
78.84	1.33	79.88	3.63		
78.86 78.88	1.40 1.47	79.90 79.92	3.66 3.68		
78.90	1.47	79.92	3.00		
78.92	1.61	79.96	3.74		
78.94	1.68	79.98	3.76		
78.96	1.75	80.00	3.79		
78.98	1.83	80.02	3.82		
79.00	1.90	80.04	3.84		
79.02	1.97	80.06	3.87		
79.04	2.04	80.08	3.89		
79.06	2.11	80.10	3.92		
79.08	2.18	80.12	3.94		
79.10 79.12	2.25 2.32	80.14 80.16	3.97 3.99		
79.12 79.14	2.32	80.18	3.99 4.02		
79.14	2.39	80.20	4.02		
79.18	2.52	80.22	4.07		
79.20	2.59	80.24	4.09		
79.22	2.65	80.26	4.12		
		I		I	

Prepared by Linden Engineering Partners, LLC HydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC

Page 37

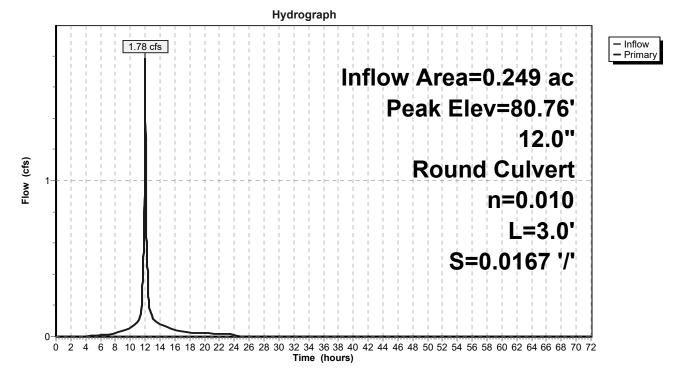
Stage-Area-Storage for Pond 9R: DMH#1-DMH#2

Elevation	Storage	Elevation	Storage	Elevation	Storage
(feet)	(acre-feet)	(feet)	(acre-feet)	(feet)	(acre-feet)
78.20	0.000	79.24	0.000	80.28	0.000
78.22	0.000	79.26	0.000	80.30	0.000
78.24	0.000	79.28	0.000	80.32	0.000
78.26	0.000	79.30	0.000	80.34	0.000
78.28	0.000	79.32 79.34	0.000	80.36 80.38	0.000
78.30 78.32	0.000 0.000	79.34 79.36	0.000 0.000	80.30	0.000 0.000
78.32	0.000	79.38	0.000	80.40	0.000
78.36	0.000	79.40	0.000	80.44	0.000
78.38	0.000	79.42	0.000	80.46	0.000
78.40	0.000	79.44	0.000	80.48	0.000
78.42	0.000	79.46	0.000	80.50	0.000
78.44	0.000	79.48	0.000	80.52	0.000
78.46	0.000	79.50	0.000	80.54	0.000
78.48	0.000	79.52	0.000	80.56	0.000
78.50	0.000	79.54	0.000	80.58	0.000
78.52	0.000	79.56	0.000	80.60	0.000
78.54	0.000	79.58	0.000		
78.56	0.000	79.60	0.000		
78.58	0.000	79.62	0.000		
78.60	0.000	79.64	0.000		
78.62	0.000	79.66	0.000		
78.64	0.000	79.68	0.000		
78.66	0.000	79.70	0.000		
78.68 78.70	0.000 0.000	79.72 79.74	0.000 0.000		
78.70	0.000	79.74	0.000		
78.72	0.000	79.78	0.000		
78.76	0.000	79.80	0.000		
78.78	0.000	79.82	0.000		
78.80	0.000	79.84	0.000		
78.82	0.000	79.86	0.000		
78.84	0.000	79.88	0.000		
78.86	0.000	79.90	0.000		
78.88	0.000	79.92	0.000		
78.90	0.000	79.94	0.000		
78.92	0.000	79.96	0.000		
78.94	0.000	79.98	0.000		
78.96	0.000	80.00	0.000		
78.98	0.000	80.02	0.000		
79.00	0.000	80.04 80.06	0.000		
79.02 79.04	0.000 0.000	80.08	0.000 0.000		
79.04	0.000	80.10	0.000		
79.08	0.000	80.12	0.000		
79.10	0.000	80.14	0.000		
79.12	0.000	80.16	0.000		
79.14	0.000	80.18	0.000		
79.16	0.000	80.20	0.000		
79.18	0.000	80.22	0.000		
79.20	0.000	80.24	0.000		
79.22	0.000	80.26	0.000		
		I		I	

KING RAIL DEVELOPED STORMWATER CALCULATIONS Type III 24-hr 100 year Rainfall=6.50" **KRAIL-DEV2** Prepared by Linden Engineering Partners, LLC HydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC

Page 38

Summary for Pond 11R: DCB#2 - DMH#1


Inflow Area = 0.249 ac, 76.99% Impervious, Inflow Depth = 5.22" for 100 year event Inflow 1.78 cfs @ 12.00 hrs, Volume= 0.109 af = 1.78 cfs @ 12.00 hrs, Volume= Outflow 0.109 af, Atten= 0%, Lag= 0.0 min = 0.109 af Primary = 1.78 cfs @ 12.00 hrs, Volume= Routed to Pond 9R : DMH#1-DMH#2

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 80.76' @ 12.01 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	78.25'	12.0" Round Culvert L= 3.0' Square-edged headwall, Ke= 0.500 Inlet / Outlet Invert= 78.25' / 78.20' S= 0.0167 '/' Cc= 0.900 n= 0.010, Flow Area= 0.79 sf

Primary OutFlow Max=1.65 cfs @ 12.00 hrs HW=80.73' TW=80.54' (Dynamic Tailwater) -1=Culvert (Inlet Controls 1.65 cfs @ 2.11 fps)

Pond 11R: DCB#2 - DMH#1

Prepared by Linden Engineering Partners, LLC HydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC

Page 39

Stage-Discharge for Pond 11R: DCB#2 - DMH#1

Elevation	Primary	Elevation	Primary	Elevation	Primary
(feet)	(cfs)	(feet)	(cfs)	(feet)	(cfs)
78.25	0.00	79.29	2.36	80.33	4.75
78.27	0.00	79.31	2.43	80.35	4.78
78.29	0.01	79.33	2.49	80.37	4.81
78.31 78.33	0.02 0.03	79.35 79.37	2.55 2.61	80.39 80.41	4.84 4.87
78.35	0.03	79.39	2.67	80.41	4.87
78.37	0.04	79.41	2.73	80.45	4.93
78.39	0.08	79.43	2.79	80.47	4.96
78.41	0.10	79.45	2.84	80.49	4.99
78.43	0.12	79.47	2.90	80.51	5.02
78.45	0.14	79.49	2.95	80.53	5.05
78.47	0.17	79.51	3.00	80.55	5.07
78.49	0.20	79.53	3.04	80.57	5.10
78.51	0.23	79.55	3.08	80.59	5.13
78.53	0.26	79.57	3.11	80.61	5.16
78.55	0.29	79.59	3.16	80.63	5.19
78.57 78.59	0.33 0.37	79.61 79.63	3.24 3.31	80.65 80.67	5.21 5.24
78.61	0.37	79.65	3.39	80.69	5.24
78.63	0.45	79.67	3.46	80.71	5.29
78.65	0.49	79.69	3.54	80.73	5.32
78.67	0.53	79.71	3.61	80.75	5.35
78.69	0.58	79.73	3.68	80.77	5.37
78.71	0.62	79.75	3.75	80.79	5.40
78.73	0.67	79.77	3.82		
78.75	0.72	79.79	3.86		
78.77	0.77	79.81	3.89		
78.79 78.81	0.82 0.88	79.83 79.85	3.93 3.97		
78.83	0.88	79.85	4.00		
78.85	0.93	79.89	4.04		
78.87	1.04	79.91	4.07		
78.89	1.10	79.93	4.11		
78.91	1.16	79.95	4.14		
78.93	1.22	79.97	4.18		
78.95	1.28	79.99	4.21		
78.97	1.34	80.01	4.24		
78.99	1.40	80.03	4.28		
79.01	1.46 1.52	80.05	4.31 4.34		
79.03 79.05	1.52	80.07 80.09	4.34		
79.03	1.65	80.11	4.41		
79.09	1.71	80.13	4.44		
79.11	1.78	80.15	4.47		
79.13	1.84	80.17	4.51		
79.15	1.91	80.19	4.54		
79.17	1.97	80.21	4.57		
79.19	2.04	80.23	4.60		
79.21	2.11	80.25	4.63		
79.23 79.25	2.17 2.24	80.27 80.29	4.66 4.69		
79.25	2.24	80.29	4.09		
	2.00	50.01	1.12	I	

Prepared by Linden Engineering Partners, LLC HydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC

Page 40

Stage-Area-Storage for Pond 11R: DCB#2 - DMH#1

$ \begin{array}{ c c c c } \hline (feet) & (acre-feet) \\ \hline (fe$	Elevation	Storage	Elevation	Storage	Elevation	Storage
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(feet)	(acre-feet)	(feet)	(acre-feet)	(feet)	(acre-feet)
78.290.000 79.33 0.000 80.37 0.000 78.31 0.000 79.35 0.000 80.39 0.000 78.33 0.000 79.37 0.000 80.41 0.000 78.35 0.000 79.39 0.000 80.43 0.000 78.39 0.000 79.41 0.000 80.45 0.000 78.41 0.000 79.43 0.000 80.47 0.000 78.43 0.000 79.45 0.000 80.51 0.000 78.43 0.000 79.45 0.000 80.53 0.000 78.44 0.000 79.51 0.000 80.55 0.000 78.47 0.000 79.53 0.000 80.55 0.000 78.51 0.000 79.55 0.000 80.59 0.000 78.53 0.000 79.57 0.000 80.63 0.000 78.55 0.000 79.63 0.000 80.63 0.000 78.55 0.000 79.63 0.000 80.67 0.000 78.63 0.000 79.67 0.000 80.71 0.000 78.63 0.000 79.77 0.000 80.77 0.000 78.79 0.000 79.77 0.000 80.77 0.000 78.79 0.000 79.77 0.000 80.77 0.000 78.79 0.000 79.97 0.000 78.77 0.000 78.79 0.000 79.97 0.000 78.97 0.000 78.99 0.000 79.97 0.0						
78.310.000 79.35 0.000 80.39 0.000 78.33 0.000 79.37 0.000 80.41 0.000 78.35 0.000 79.39 0.000 80.43 0.000 78.37 0.000 79.41 0.000 80.45 0.000 78.39 0.000 79.43 0.000 80.47 0.000 78.41 0.000 79.45 0.000 80.47 0.000 78.43 0.000 79.47 0.000 80.51 0.000 78.47 0.000 79.53 0.000 80.55 0.000 78.47 0.000 79.53 0.000 80.55 0.000 78.51 0.000 79.55 0.000 80.59 0.000 78.55 0.000 79.59 0.000 80.63 0.000 78.55 0.000 79.65 0.000 80.65 0.000 78.57 0.000 79.65 0.000 80.65 0.000 78.59 0.000 79.67 0.000 80.67 0.000 78.67 0.000 79.67 0.000 80.77 0.000 78.67 0.000 79.77 0.000 80.77 0.000 78.73 0.000 79.77 0.000 80.79 0.000 78.83 0.000 79.97 0.000 78.73 0.000 78.89 0.000 79.97 0.000 78.87 0.000 78.89 0.000 79.97 0.000 78.97 0.000 78.99 0.000 79.99 0.0						
78.330.000 79.37 0.000 80.41 0.000 78.35 0.000 79.39 0.000 80.43 0.000 78.37 0.000 79.41 0.000 80.45 0.000 78.39 0.000 79.43 0.000 80.47 0.000 78.41 0.000 79.45 0.000 80.51 0.000 78.43 0.000 79.47 0.000 80.51 0.000 78.44 0.000 79.47 0.000 80.53 0.000 78.45 0.000 79.55 0.000 80.55 0.000 78.51 0.000 79.55 0.000 80.55 0.000 78.53 0.000 79.57 0.000 80.61 0.000 78.55 0.000 79.63 0.000 80.65 0.000 78.55 0.000 79.63 0.000 80.65 0.000 78.57 0.000 79.67 0.000 80.67 0.000 78.63 0.000 79.67 0.000 80.67 0.000 78.64 0.000 79.77 0.000 80.77 0.000 78.65 0.000 79.77 0.000 80.77 0.000 78.69 0.000 79.77 0.000 80.77 0.000 78.77 0.000 79.77 0.000 80.79 0.000 78.81 0.000 79.98 0.000 78.87 0.000 78.83 0.000 79.97 0.000 78.97 0.000 78.99 0.000 79.97 0.0						
78.350.000 79.39 0.000 80.43 0.000 78.37 0.000 79.41 0.000 80.45 0.000 78.39 0.000 79.43 0.000 80.47 0.000 78.41 0.000 79.45 0.000 80.49 0.000 78.43 0.000 79.47 0.000 80.51 0.000 78.43 0.000 79.49 0.000 80.53 0.000 78.47 0.000 79.55 0.000 80.55 0.000 78.51 0.000 79.55 0.000 80.57 0.000 78.55 0.000 79.57 0.000 80.61 0.000 78.55 0.000 79.57 0.000 80.61 0.000 78.55 0.000 79.57 0.000 80.61 0.000 78.57 0.000 79.65 0.000 80.65 0.000 78.59 0.000 79.65 0.000 80.65 0.000 78.63 0.000 79.67 0.000 80.73 0.000 78.63 0.000 79.77 0.000 80.73 0.000 78.67 0.000 79.77 0.000 80.77 0.000 78.77 0.000 79.77 0.000 80.79 0.000 78.77 0.000 79.77 0.000 78.77 0.000 78.77 0.000 79.77 0.000 78.77 0.000 78.77 0.000 79.97 0.000 78.77 0.000 78.89 0.000 79.97 0.0						
78.370.000 79.41 0.000 80.45 0.000 78.39 0.000 79.43 0.000 80.47 0.000 78.41 0.000 79.45 0.000 80.49 0.000 78.43 0.000 79.47 0.000 80.51 0.000 78.45 0.000 79.47 0.000 80.53 0.000 78.47 0.000 79.51 0.000 80.55 0.000 78.49 0.000 79.53 0.000 80.57 0.000 78.51 0.000 79.55 0.000 80.57 0.000 78.53 0.000 79.59 0.000 80.63 0.000 78.55 0.000 79.59 0.000 80.63 0.000 78.57 0.000 79.65 0.000 80.63 0.000 78.59 0.000 79.65 0.000 80.67 0.000 78.61 0.000 79.65 0.000 80.67 0.000 78.65 0.000 79.67 0.000 80.71 0.000 78.67 0.000 79.77 0.000 80.77 0.000 78.75 0.000 79.77 0.000 80.77 0.000 78.77 0.000 79.87 0.000 78.87 0.000 78.81 0.000 79.98 0.000 78.87 0.000 78.89 0.000 79.99 0.000 78.99 0.000 78.99 0.000 79.99 0.000 78.97 0.000 78.99 0.000 79.99 0.0						
78.39 0.000 79.43 0.000 80.47 0.000 78.41 0.000 79.45 0.000 80.49 0.000 78.43 0.000 79.47 0.000 80.51 0.000 78.45 0.000 79.49 0.000 80.53 0.000 78.47 0.000 79.51 0.000 80.55 0.000 78.49 0.000 79.55 0.000 80.55 0.000 78.53 0.000 79.57 0.000 80.61 0.000 78.53 0.000 79.57 0.000 80.63 0.000 78.55 0.000 79.63 0.000 80.63 0.000 78.57 0.000 79.65 0.000 80.67 0.000 78.61 0.000 79.65 0.000 80.67 0.000 78.63 0.000 79.67 0.000 80.71 0.000 78.64 0.000 79.77 0.000 80.77 0.000 78.67 0.000 79.77 0.000 80.77 0.000 78.79 0.000 79.77 0.000 78.77 0.000 78.81 0.000 79.87 0.000 78.87 0.000 78.87 0.000 79.99 0.000 78.87 0.000 78.89 0.000 79.97 0.000 78.97 0.000 78.99 0.000 79.97 0.000 78.97 0.000 78.99 0.000 7						
78.410.000 79.45 0.000 80.49 0.000 78.43 0.000 79.47 0.000 80.51 0.000 78.45 0.000 79.49 0.000 80.53 0.000 78.47 0.000 79.51 0.000 80.55 0.000 78.49 0.000 79.53 0.000 80.57 0.000 78.51 0.000 79.55 0.000 80.659 0.000 78.53 0.000 79.57 0.000 80.63 0.000 78.55 0.000 79.61 0.000 80.65 0.000 78.57 0.000 79.63 0.000 80.65 0.000 78.59 0.000 79.63 0.000 80.67 0.000 78.61 0.000 79.67 0.000 80.71 0.000 78.65 0.000 79.69 0.000 80.73 0.000 78.67 0.000 79.73 0.000 80.75 0.000 78.69 0.000 79.77 0.000 80.77 0.000 78.73 0.000 79.77 0.000 80.77 0.000 78.73 0.000 79.77 0.000 80.79 0.000 78.83 0.000 79.83 0.000 78.87 0.000 78.87 0.000 79.93 0.000 78.87 0.000 78.89 0.000 79.99 0.000 78.99 0.000 78.99 0.000 79.99 0.000 78.99 0.000 78.99 0.000 79.99 0.						
78.43 0.000 79.47 0.000 80.51 0.000 78.45 0.000 79.49 0.000 80.53 0.000 78.47 0.000 79.51 0.000 80.55 0.000 78.49 0.000 79.55 0.000 80.57 0.000 78.51 0.000 79.55 0.000 80.61 0.000 78.53 0.000 79.57 0.000 80.61 0.000 78.55 0.000 79.61 0.000 80.65 0.000 78.57 0.000 79.63 0.000 80.67 0.000 78.61 0.000 79.67 0.000 80.67 0.000 78.63 0.000 79.67 0.000 80.73 0.000 78.65 0.000 79.71 0.000 80.75 0.000 78.67 0.000 79.77 0.000 80.77 0.000 78.73 0.000 79.77 0.000 80.79 0.000 78.77 0.000 79.77 0.000 78.79 0.000 78.81 0.000 79.87 0.000 78.87 0.000 78.85 0.000 79.99 0.000 78.97 0.000 78.87 0.000 79.97 0.000 78.97 0.000 78.93 0.000 79.97 0.000 78.97 0.000 78.99 0.000 79.99 0.000 78.97 0.000 78.99 0.000 7						
78.45 0.000 79.49 0.000 80.53 0.000 78.47 0.000 79.51 0.000 80.55 0.000 78.49 0.000 79.53 0.000 80.57 0.000 78.51 0.000 79.55 0.000 80.61 0.000 78.53 0.000 79.57 0.000 80.61 0.000 78.55 0.000 79.59 0.000 80.63 0.000 78.57 0.000 79.61 0.000 80.63 0.000 78.59 0.000 79.63 0.000 80.69 0.000 78.63 0.000 79.67 0.000 80.71 0.000 78.63 0.000 79.67 0.000 80.73 0.000 78.67 0.000 79.71 0.000 80.77 0.000 78.69 0.000 79.75 0.000 80.77 0.000 78.71 0.000 79.77 0.000 80.79 0.000 78.75 0.000 79.83 0.000 78.81 0.000 78.81 0.000 79.87 0.000 78.87 0.000 78.83 0.000 79.99 0.000 78.99 0.000 78.93 0.000 79.97 0.000 78.97 0.000 78.93 0.000 79.99 0.000 78.97 0.000 78.99 0.000 79.99 0.000 78.99 0.000 78.99 0.000 7						
78.47 0.000 79.51 0.000 80.55 0.000 78.49 0.000 79.53 0.000 80.57 0.000 78.51 0.000 79.55 0.000 80.63 0.000 78.53 0.000 79.57 0.000 80.61 0.000 78.57 0.000 79.59 0.000 80.63 0.000 78.57 0.000 79.61 0.000 80.63 0.000 78.59 0.000 79.65 0.000 80.69 0.000 78.61 0.000 79.67 0.000 80.71 0.000 78.63 0.000 79.77 0.000 80.73 0.000 78.67 0.000 79.75 0.000 80.77 0.000 78.69 0.000 79.77 0.000 80.77 0.000 78.77 0.000 79.79 0.000 80.79 0.000 78.77 0.000 79.85 0.000 78.79 0.000 78.81 0.000 79.87 0.000 78.87 0.000 78.87 0.000 79.99 0.000 78.99 0.000 78.97 0.000 79.97 0.000 78.97 0.000 78.97 0.000 79.97 0.000 78.97 0.000 78.99 0.000 79.99 0.000 78.97 0.000 78.97 0.000 79.99 0.000 78.97 0.000 78.99 0.000 7						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
78.51 0.000 79.55 0.000 80.59 0.000 78.53 0.000 79.57 0.000 80.61 0.000 78.55 0.000 79.59 0.000 80.63 0.000 78.57 0.000 79.63 0.000 80.65 0.000 78.61 0.000 79.65 0.000 80.67 0.000 78.63 0.000 79.67 0.000 80.71 0.000 78.63 0.000 79.67 0.000 80.73 0.000 78.67 0.000 79.73 0.000 80.77 0.000 78.69 0.000 79.75 0.000 80.77 0.000 78.69 0.000 79.75 0.000 80.79 0.000 78.73 0.000 79.77 0.000 80.79 0.000 78.73 0.000 79.77 0.000 80.79 0.000 78.79 0.000 79.83 0.000 78.87 0.000 78.83 0.000 79.87 0.000 78.87 0.000 78.87 0.000 79.97 0.000 78.97 0.000 78.93 0.000 79.99 0.000 78.97 0.000 78.97 0.000 79.97 0.000 78.97 0.000 78.99 0.000 79.99 0.000 78.97 0.000 78.97 0.000 80.07 0.000 79.97 0.000 78.99 0.000 8						
78.53 0.000 79.57 0.000 80.61 0.000 78.55 0.000 79.59 0.000 80.63 0.000 78.57 0.000 79.61 0.000 80.65 0.000 78.59 0.000 79.63 0.000 80.67 0.000 78.63 0.000 79.67 0.000 80.71 0.000 78.63 0.000 79.67 0.000 80.73 0.000 78.65 0.000 79.74 0.000 80.75 0.000 78.67 0.000 79.73 0.000 80.77 0.000 78.67 0.000 79.75 0.000 80.79 0.000 78.73 0.000 79.83 0.000 78.79 0.000 78.76 0.000 79.83 0.000 78.83 0.000 78.83 0.000 79.89 0.000 78.87 0.000 78.83 0.000 79.99 0.000 78.93 0.000						
78.55 0.000 79.59 0.000 80.63 0.000 78.57 0.000 79.61 0.000 80.65 0.000 78.59 0.000 79.63 0.000 80.67 0.000 78.61 0.000 79.65 0.000 80.67 0.000 78.63 0.000 79.67 0.000 80.71 0.000 78.65 0.000 79.71 0.000 80.75 0.000 78.67 0.000 79.73 0.000 80.79 0.000 78.69 0.000 79.75 0.000 80.79 0.000 78.71 0.000 79.77 0.000 78.77 0.000 78.76 0.000 79.83 0.000 78.83 0.000 78.81 0.000 79.85 0.000 78.87 0.000 78.83 0.000 79.93 0.000 78.87 0.000 78.83 0.000 79.99 0.000 78.97 0.000						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
78.65 0.000 79.69 0.000 80.73 0.000 78.67 0.000 79.71 0.000 80.75 0.000 78.69 0.000 79.73 0.000 80.77 0.000 78.71 0.000 79.75 0.000 80.79 0.000 78.73 0.000 79.77 0.000 80.79 0.000 78.75 0.000 79.77 0.000 80.79 0.000 78.77 0.000 79.83 0.000 78.81 0.000 78.83 0.000 78.81 0.000 79.87 0.000 78.85 0.000 78.87 0.000 78.85 0.000 79.93 0.000 78.89 0.000 78.93 0.000 78.93 0.000 79.97 0.000 78.93 0.000 78.93 0.000 78.93 0.000 79.99 0.000 78.97 0.000 78.97 0.000 78.97 0.000 80.03 <						
78.67 0.000 79.71 0.000 80.75 0.000 78.69 0.000 79.73 0.000 80.77 0.000 78.71 0.000 79.75 0.000 80.79 0.000 78.73 0.000 79.77 0.000 80.79 0.000 78.73 0.000 79.77 0.000 78.77 0.000 78.75 0.000 79.83 0.000 78.81 0.000 78.81 0.000 79.85 0.000 78.83 0.000 78.83 0.000 79.87 0.000 78.85 0.000 78.85 0.000 79.93 0.000 78.87 0.000 78.87 0.000 79.93 0.000 78.93 0.000 78.93 0.000 79.97 0.000 78.97 0.000 78.95 0.000 79.99 0.000 78.97 0.000 78.97 0.000 80.03 0.000 78.97 0.000						
78.69 0.000 79.73 0.000 80.77 0.000 78.71 0.000 79.75 0.000 80.79 0.000 78.73 0.000 79.77 0.000 80.79 0.000 78.75 0.000 79.79 0.000 80.79 0.000 78.75 0.000 79.81 0.000 78.77 0.000 78.79 0.000 79.83 0.000 78.83 0.000 78.83 0.000 79.87 0.000 78.85 0.000 78.85 0.000 79.99 0.000 78.87 0.000 78.87 0.000 79.93 0.000 78.89 0.000 78.89 0.000 79.97 0.000 78.95 0.000 78.93 0.000 79.97 0.000 78.97 0.000 78.97 0.000 79.99 0.000 78.97 0.000 78.95 0.000 79.99 0.000 78.97 0.000 78.97 0.000 80.03 0.000 79.01 0.000 80.0						
78.710.00079.750.00080.790.00078.730.00079.770.000						
78.730.00079.770.00078.750.00079.790.00078.770.00079.810.00078.790.00079.830.00078.810.00079.850.00078.830.00079.870.00078.850.00079.910.00078.870.00079.930.00078.890.00079.950.00078.910.00079.970.00078.950.00079.990.00078.970.00080.010.00078.980.00080.030.00078.950.00080.030.00078.970.00080.070.00079.030.00080.090.00079.050.00080.110.000						
78.770.00079.810.00078.790.00079.830.00078.810.00079.850.00078.830.00079.870.00078.850.00079.890.00078.870.00079.910.00078.890.00079.930.00078.910.00079.950.00078.930.00079.970.00078.950.00079.990.00078.970.00080.010.00078.990.00080.050.00079.010.00080.070.00079.050.00080.090.00079.070.00080.110.000	78.73	0.000	79.77			
78.790.00079.830.00078.810.00079.850.00078.830.00079.870.00078.850.00079.890.00078.870.00079.910.00078.890.00079.930.00078.910.00079.950.00078.930.00079.990.00078.950.00079.990.00078.970.00080.010.00078.990.00080.050.00079.010.00080.070.00079.050.00080.090.00079.070.00080.110.000	78.75	0.000	79.79	0.000		
78.81 0.000 79.85 0.000 78.83 0.000 79.87 0.000 78.85 0.000 79.89 0.000 78.87 0.000 79.91 0.000 78.89 0.000 79.93 0.000 78.91 0.000 79.95 0.000 78.93 0.000 79.97 0.000 78.95 0.000 79.99 0.000 78.97 0.000 80.01 0.000 78.99 0.000 80.03 0.000 79.01 0.000 80.05 0.000 79.05 0.000 80.09 0.000 79.07 0.000 80.11 0.000						
78.830.00079.870.00078.850.00079.890.00078.870.00079.910.00078.890.00079.930.00078.910.00079.950.00078.930.00079.970.00078.950.00079.990.00078.970.00080.010.00078.990.00080.050.00079.010.00080.050.00079.050.00080.090.00079.070.00080.110.000						
78.850.00079.890.00078.870.00079.910.00078.890.00079.930.00078.910.00079.950.00078.930.00079.970.00078.950.00079.990.00078.970.00080.010.00078.990.00080.030.00079.010.00080.050.00079.030.00080.070.00079.050.00080.110.000						
78.870.00079.910.00078.890.00079.930.00078.910.00079.950.00078.930.00079.970.00078.950.00079.990.00078.970.00080.010.00078.990.00080.030.00079.010.00080.050.00079.030.00080.070.00079.050.00080.110.000						
78.890.00079.930.00078.910.00079.950.00078.930.00079.970.00078.950.00079.990.00078.970.00080.010.00078.990.00080.030.00079.010.00080.050.00079.030.00080.070.00079.050.00080.110.000						
78.910.00079.950.00078.930.00079.970.00078.950.00079.990.00078.970.00080.010.00078.990.00080.030.00079.010.00080.050.00079.030.00080.070.00079.050.00080.110.000						
78.930.00079.970.00078.950.00079.990.00078.970.00080.010.00078.990.00080.030.00079.010.00080.050.00079.030.00080.070.00079.050.00080.090.00079.070.00080.110.000						
78.950.00079.990.00078.970.00080.010.00078.990.00080.030.00079.010.00080.050.00079.030.00080.070.00079.050.00080.090.00079.070.00080.110.000						
78.970.00080.010.00078.990.00080.030.00079.010.00080.050.00079.030.00080.070.00079.050.00080.090.00079.070.00080.110.000						
78.990.00080.030.00079.010.00080.050.00079.030.00080.070.00079.050.00080.090.00079.070.00080.110.000						
79.010.00080.050.00079.030.00080.070.00079.050.00080.090.00079.070.00080.110.000						
79.030.00080.070.00079.050.00080.090.00079.070.00080.110.000						
79.050.00080.090.00079.070.00080.110.000						
79.07 0.000 80.11 0.000						
79.09 0.000 80.13 0.000	79.07					
	79.09	0.000	80.13	0.000		
79.11 0.000 80.15 0.000	79.11	0.000	80.15	0.000		
79.13 0.000 80.17 0.000						
79.15 0.000 80.19 0.000						
79.17 0.000 80.21 0.000						
79.19 0.000 80.23 0.000						
79.21 0.000 80.25 0.000						
79.23 0.000 80.27 0.000						
79.25 0.000 80.29 0.000 79.27 0.000 80.31 0.000						
10.27 0.000 00.01 0.000	13.21	0.000	00.01	0.000	I	

KING RAIL DEVELOPED STORMWATER CALCULATIONS Type III 24-hr 100 year Rainfall=6.50" **KRAIL-DEV2** Prepared by Linden Engineering Partners, LLC HydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC

Summary for Pond 12R: DMH#2-CASCADE

Inflow Area = 0.771 ac, 74.90% Impervious, Inflow Depth = 5.17" for 100 year event Inflow 4.68 cfs @ 12.00 hrs, Volume= 0.332 af = 4.68 cfs @ 12.00 hrs, Volume= Outflow 0.332 af, Atten= 0%, Lag= 0.0 min = 4.68 cfs @ 12.00 hrs, Volume= Primary = 0.332 af Routed to Pond 1R : CASCADE-SSIB#1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 79.99' @ 12.01 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	77.33'	15.0" Round Culvert L= 3.0' Square-edged headwall, Ke= 0.500 Inlet / Outlet Invert= 77.33' / 77.30' S= 0.0100 '/' Cc= 0.900 n= 0.010, Flow Area= 1.23 sf

Primary OutFlow Max=4.65 cfs @ 12.00 hrs HW=79.98' TW=79.36' (Dynamic Tailwater) 1=Culvert (Inlet Controls 4.65 cfs @ 3.79 fps)

Hydrograph 5 - Inflow 4.68 cfs - Primary Inflow Area=0.771 ac 4 Peak Elev=79.99' 15.0" 3 Flow (cfs) Round Culvert n=0.010 2 L=3.0' S=0.0100 '/' 1 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 Time (hours)

Pond 12R: DMH#2-CASCADE

KING RAIL DEVELOPED STORMWATER CALCULATIONS Type III 24-hr 100 year Rainfall=6.50"

Prepared by Linden Engineering Partners, LLC HydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC

Page 42

Stage-Discharge for Pond 12R: DMH#2-CASCADE

Elevation	Primary	Elevation	Primary	Elevation	Primary
(feet)	(cfs)	(feet)	(cfs)	(feet)	(cfs)
77.33	0.00	78.37	2.81	79.41	7.13
77.35	0.00	78.39	2.90	79.43	7.18
77.37	0.01	78.41	2.99	79.45	7.22
77.39	0.02	78.43	3.07	79.47	7.27
77.41	0.03	78.45	3.16	79.49	7.32
77.43	0.04	78.47	3.25	79.51	7.37
77.45	0.06	78.49	3.34	79.53	7.42
77.47	0.07	78.51	3.43	79.55	7.46
77.49	0.10	78.53	3.52	79.57	7.51
77.51	0.12	78.55	3.61	79.59	7.56
77.53	0.15	78.57	3.70	79.61	7.60
77.55	0.17	78.59	3.79	79.63	7.65
77.57	0.20	78.61	3.88	79.65	7.69
77.59	0.24	78.63	3.97	79.67	7.74
77.61	0.27	78.65	4.06	79.69	7.78
77.63	0.31	78.67	4.14	79.71	7.83
77.65	0.35	78.69	4.23	79.73	7.87
77.67	0.39	78.71	4.31	79.75	7.92
77.69	0.43	78.73	4.40	79.77	7.96
77.71	0.47	78.75	4.48	79.79	8.00
77.73	0.52	78.77	4.56	79.81	8.05
77.75	0.57	78.79	4.64	79.83	8.09
77.77	0.62	78.81	4.72	79.85	8.13
77.79	0.67	78.83	4.80	79.87	8.18
77.81	0.73	78.85	4.87	79.89	8.22
77.83	0.78	78.87	4.95	79.91	8.26
77.85	0.84	78.89	5.01	79.93	8.30
77.87	0.90	78.91	5.08	79.95	8.35
77.89	0.96	78.93	5.14	79.97	8.39
77.91	1.02	78.95	5.20	79.99	8.43
77.93	1.09	78.97	5.25	80.01	8.47
77.95	1.15	78.99	5.29		
77.97	1.22	79.01	5.38		
77.99	1.29	79.03	5.50		
78.01	1.36	79.05	5.61		
78.03	1.43	79.07	5.72		
78.05	1.50	79.09	5.83		
78.07	1.57	79.11	5.94		
78.09	1.65	79.13	6.04		
78.11	1.73	79.15	6.14		
78.13	1.80	79.17	6.25		
78.15	1.88	79.19	6.35		
78.17	1.96	79.21	6.44		
78.19	2.04	79.23	6.54		
78.21	2.13	79.25	6.64		
78.23	2.21	79.27	6.73		
78.25	2.29	79.29	6.82		
78.27	2.38	79.31	6.88		
78.29	2.46	79.33	6.93		
78.31	2.55	79.35	6.98		
78.33	2.63	79.37	7.03		
78.35	2.72	79.39	7.08		
	I		I	l	

Prepared by Linden Engineering Partners, LLC HydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC

Page 43

Stage-Area-Storage for Pond 12R: DMH#2-CASCADE

Elevation	Storage	Elevation	Storage	Elevation	Storage
(feet)	(acre-feet)	(feet)	(acre-feet)	(feet)	(acre-feet)
77.33	0.000	78.37	0.000	79.41	0.000
77.35	0.000	78.39	0.000	79.43	0.000
77.37	0.000	78.41	0.000	79.45	0.000
77.39	0.000	78.43	0.000	79.47	0.000
77.41 77.43	0.000 0.000	78.45 78.47	0.000	79.49 79.51	0.000
77.43	0.000	78.47	0.000 0.000	79.51	0.000 0.000
77.43	0.000	78.51	0.000	79.55	0.000
77.49	0.000	78.53	0.000	79.57	0.000
77.51	0.000	78.55	0.000	79.59	0.000
77.53	0.000	78.57	0.000	79.61	0.000
77.55	0.000	78.59	0.000	79.63	0.000
77.57	0.000	78.61	0.000	79.65	0.000
77.59	0.000	78.63	0.000	79.67	0.000
77.61	0.000	78.65	0.000	79.69	0.000
77.63	0.000	78.67	0.000	79.71	0.000
77.65	0.000	78.69	0.000	79.73	0.000
77.67	0.000	78.71	0.000	79.75	0.000
77.69	0.000	78.73	0.000	79.77	0.000
77.71	0.000	78.75	0.000	79.79	0.000
77.73 77.75	0.000 0.000	78.77 78.79	0.000 0.000	79.81 79.83	0.000 0.000
77.77	0.000	78.81	0.000	79.85	0.000
77.79	0.000	78.83	0.000	79.87	0.000
77.81	0.000	78.85	0.000	79.89	0.000
77.83	0.000	78.87	0.000	79.91	0.000
77.85	0.000	78.89	0.000	79.93	0.000
77.87	0.000	78.91	0.000	79.95	0.000
77.89	0.000	78.93	0.000	79.97	0.000
77.91	0.000	78.95	0.000	79.99	0.000
77.93	0.000	78.97	0.000	80.01	0.000
77.95	0.000	78.99	0.000		
77.97	0.000	79.01	0.000		
77.99	0.000	79.03	0.000		
78.01 78.03	0.000 0.000	79.05 79.07	0.000 0.000		
78.05	0.000	79.07	0.000		
78.07	0.000	79.11	0.000		
78.09	0.000	79.13	0.000		
78.11	0.000	79.15	0.000		
78.13	0.000	79.17	0.000		
78.15	0.000	79.19	0.000		
78.17	0.000	79.21	0.000		
78.19	0.000	79.23	0.000		
78.21	0.000	79.25	0.000		
78.23	0.000	79.27	0.000		
78.25	0.000	79.29	0.000		
78.27	0.000 0.000	79.31 79.33	0.000		
78.29 78.31	0.000	79.33	0.000 0.000		
78.33	0.000	79.37	0.000		
78.35	0.000	79.39	0.000		
			0.000	I	

KING RAIL DEVELOPED STORMWATER CALCULATIONS Type III 24-hr 100 year Rainfall=6.50" **KRAIL-DEV2** Prepared by Linden Engineering Partners, LLC HydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC

Page 44

Summary for Pond 14R: DCB#3-DMH#2

Inflow Area = 0.305 ac, 77.44% Impervious, Inflow Depth = 5.33" for 100 year event Inflow 2.21 cfs @ 12.00 hrs, Volume= 0.136 af = 2.21 cfs @ 12.00 hrs, Volume= Outflow 0.136 af, Atten= 0%, Lag= 0.0 min = Primary = 2.21 cfs @ 12.00 hrs, Volume= 0.136 af Routed to Pond 12R : DMH#2-CASCADE

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 80.29' @ 12.00 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	77.58'	12.0" Round Culvert L= 3.0' Square-edged headwall, Ke= 0.500 Inlet / Outlet Invert= 77.58' / 77.55' S= 0.0100 '/' Cc= 0.900 n= 0.010, Flow Area= 0.79 sf

Primary OutFlow Max=2.03 cfs @ 12.00 hrs HW=80.27' TW=79.98' (Dynamic Tailwater) 1=Culvert (Inlet Controls 2.03 cfs @ 2.58 fps)

Hydrograph - Inflow 2.21 cfs - Primary Inflow Area=0.305 ac 2 Peak Elev=80.29' 12.0" Flow (cfs) **Round Culvert** n=0.010 L=3.0' S=0.0100 '/' 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 Time (hours)

Pond 14R: DCB#3-DMH#2

KING RAIL DEVELOPED STORMWATER CALCULATIONS Type III 24-hr 100 year Rainfall=6.50"

Prepared by Linden Engineering Partners, LLC HydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC

Page 45

Stage-Discharge for Pond 14R: DCB#3-DMH#2

10000 10000 10000 10000 10000 77.58 0.00 78.64 2.35 79.66 4.75 77.60 0.00 78.64 2.35 79.68 4.73 77.64 0.01 78.66 2.41 79.70 4.81 77.64 0.02 78.70 2.53 79.74 4.87 77.66 0.04 78.72 2.59 79.76 4.90 77.76 0.05 78.74 2.65 79.78 4.93 77.72 0.07 78.76 2.71 79.86 4.90 77.76 0.11 78.82 2.87 79.86 5.02 77.78 0.13 78.82 2.87 79.86 5.05 77.80 0.15 78.84 2.91 79.86 5.05 77.80 0.15 78.84 2.91 79.86 5.10 77.84 0.21 78.88 3.00 79.92 5.13 77.86 0.24 78.92 3.07 79.96 5.19 77.90 0.30 78.94 3.16 79.98 5.21 77.94 0.38 78.98 3.31 80.02 5.24 78.00 0.50 79.04 3.54 80.06 5.32 78.00 0.50 79.04 3.54 80.06 5.32 78.04 0.58 79.08 3.68 80.12 5.40 78.04 0.58 79.02 3.46 80.16 5.35 78.00 0.50 79.04 3.54 8	Elevation (feet)	Primary (cfs)	Elevation (feet)	Primary (cfs)	Elevation (feet)	Primary (cfs)
77.600.00 78.64 2.35 79.68 4.78 77.62 0.01 78.66 2.41 79.70 4.81 77.64 0.01 78.68 2.47 79.72 4.84 77.66 0.02 78.70 2.53 79.74 4.87 77.66 0.04 78.72 2.59 79.76 4.90 77.70 0.05 78.74 2.65 79.78 4.93 77.72 0.07 78.76 2.71 79.80 4.96 77.74 0.09 78.78 2.76 79.82 4.99 77.76 0.11 78.80 2.81 79.88 5.02 77.78 0.13 78.82 2.87 79.86 5.05 77.80 0.15 78.84 2.91 79.88 5.07 77.84 0.21 78.98 3.00 79.92 5.13 77.86 0.24 78.90 3.03 79.94 5.16 77.90 0.30 78.94 3.16 79.98 5.21 77.94 0.38 78.98 3.3180.025.27 77.96 0.41 79.00 3.3980.045.29 77.98 0.45 79.02 3.4680.065.32 78.04 0.58 79.08 3.6480.125.40 78.90 0.50 79.04 3.5480.025.27 77.96 0.41 79.00 3.3980.205.51 78.04 0.58 79.08 3.6480.185.48 78.06 0.63 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
77.620.01 78.66 2.41 79.70 4.81 77.64 0.01 78.68 2.47 79.72 4.84 77.66 0.02 78.70 2.53 79.74 4.87 77.68 0.04 78.72 2.59 79.76 4.90 77.70 0.05 78.74 2.65 79.78 4.93 77.72 0.07 78.76 2.71 79.80 4.96 77.74 0.09 78.78 2.76 79.82 4.99 77.76 0.11 78.80 2.81 79.84 5.02 77.78 0.13 78.82 2.87 79.86 5.05 77.80 0.15 78.84 2.91 79.98 5.10 77.84 0.21 78.88 3.00 79.92 5.13 77.86 0.24 78.90 3.03 79.94 5.16 77.90 0.30 78.94 3.16 79.98 5.21 77.94 0.38 78.98 3.2480.005.24 77.94 0.38 78.98 3.3180.025.27 77.96 0.41 79.06 3.6180.105.37 78.04 0.56 79.04 3.5480.085.35 78.06 0.63 79.12 3.8280.145.43 78.06 0.63 79.12 3.8280.165.45 78.06 0.63 79.10 3.7580.145.43 78.06 0.63 79.12 3.8280.165.45 78.06 0.63						
77.66 0.02 78.70 2.53 79.74 4.87 77.76 0.04 78.72 2.59 79.76 4.90 77.70 0.05 78.74 2.65 79.78 4.93 77.72 0.07 78.76 2.71 79.80 4.96 77.74 0.09 78.78 2.76 79.82 4.99 77.76 0.11 78.80 2.81 79.86 5.02 77.78 0.13 78.82 2.87 79.66 5.05 77.80 0.15 78.84 2.91 79.86 5.05 77.80 0.15 78.84 2.91 79.98 5.10 77.86 0.24 78.90 3.03 79.92 5.13 77.86 0.24 78.90 3.03 79.94 5.16 77.90 0.30 78.94 3.16 79.98 5.21 77.92 0.34 78.96 3.24 80.00 5.24 77.94 0.38 78.98 3.31 80.04 5.29 77.96 0.41 79.00 3.39 80.04 5.29 77.96 0.41 79.06 3.61 80.10 5.32 78.02 0.54 79.06 3.61 80.10 5.37 78.02 0.54 79.06 3.61 80.12 5.40 76.06 0.63 79.10 3.75 80.14 5.43 78.02 0.54 79.06 4.61 80.22 5.53 </td <td>77.62</td> <td></td> <td>78.66</td> <td>2.41</td> <td>79.70</td> <td>4.81</td>	77.62		78.66	2.41	79.70	4.81
77.68 0.04 78.72 2.59 79.76 4.90 77.70 0.05 78.74 2.65 79.78 4.96 77.74 0.09 78.76 2.71 79.82 4.99 77.76 0.11 78.80 2.81 79.82 4.99 77.78 0.13 78.82 2.87 79.86 5.02 77.78 0.13 78.82 2.87 79.86 5.02 77.78 0.15 78.84 2.91 79.88 5.07 77.80 0.15 78.84 2.91 79.98 5.07 77.82 0.18 78.86 2.96 79.90 5.10 77.84 0.21 78.88 3.00 79.94 5.16 77.86 0.24 78.92 3.07 79.96 5.19 77.90 0.30 78.94 3.16 79.98 5.21 77.92 0.34 78.96 3.24 80.00 5.24 77.96 0.41 79.00 3.39 80.04 5.29 77.98 0.45 79.02 3.46 80.06 5.32 78.00 0.50 79.04 3.54 80.06 5.35 78.02 0.54 79.06 3.61 80.12 5.40 79.96 0.41 79.06 3.61 80.12 5.40 78.06 0.68 79.12 3.82 80.16 5.45 78.10 0.73 79.14 3.88 80.18 5.43 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
77.70 0.05 78.76 2.71 79.80 4.93 77.74 0.09 78.78 2.71 79.80 4.99 77.76 0.11 78.78 2.76 79.82 4.99 77.76 0.11 78.80 2.81 79.84 5.02 77.78 0.13 78.82 2.87 79.86 5.07 77.80 0.15 78.84 2.96 79.90 5.10 77.84 0.21 78.88 3.00 79.92 5.13 77.86 0.24 78.90 3.03 79.94 5.16 77.86 0.24 78.92 3.07 79.96 5.19 77.90 0.30 78.94 3.16 79.98 5.21 77.94 0.38 78.98 3.31 80.02 5.27 77.96 0.41 79.00 3.39 80.04 5.29 77.98 0.45 79.02 3.46 80.06 5.32 78.00 0.50 79.04 3.54 80.08 5.35 78.02 0.54 79.06 3.61 80.10 5.37 78.04 0.58 79.12 3.82 80.16 5.45 78.10 0.73 79.14 3.88 80.14 5.43 78.10 0.73 79.14 3.88 80.18 5.48 78.12 0.99 79.24 4.07 80.28 5.53 78.10 0.73 79.18 3.97 80.22 5.53 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
77.72 0.07 78.76 2.71 79.80 4.96 77.76 0.11 78.80 2.81 79.82 4.99 77.76 0.13 78.82 2.87 79.86 5.05 77.80 0.15 78.84 2.91 79.88 5.07 77.82 0.18 78.86 2.96 79.90 5.10 77.84 0.21 78.88 3.00 79.92 5.13 77.86 0.24 78.90 3.03 79.94 5.16 77.86 0.24 78.92 3.07 79.96 5.19 77.90 0.30 78.94 3.16 79.96 5.19 77.92 0.34 78.96 3.24 80.00 5.24 77.96 0.41 79.00 3.39 80.04 5.29 77.96 0.41 79.00 3.39 80.04 5.29 77.96 0.41 79.06 3.61 80.08 5.35 78.00 0.50 79.04 3.54 80.08 5.35 78.02 0.54 79.06 3.61 80.14 5.43 78.06 0.63 79.10 3.75 80.14 5.43 78.06 0.63 79.10 3.75 80.14 5.43 78.06 0.68 79.12 3.82 80.20 5.51 78.10 0.73 79.14 3.88 80.18 5.48 78.12 0.78 79.32 4.04 80.26 5.58 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
77.74 0.09 78.78 2.76 79.82 4.99 77.76 0.11 78.80 2.81 79.84 5.02 77.78 0.13 78.82 2.87 79.86 5.05 77.80 0.15 78.84 2.91 79.88 5.07 77.82 0.18 78.86 2.96 79.90 5.10 77.84 0.21 78.88 3.03 79.92 5.13 77.86 0.24 78.90 3.03 79.94 5.16 77.90 0.30 78.94 3.16 79.98 5.21 77.92 0.34 78.96 3.24 80.00 5.24 77.94 0.38 78.98 3.31 80.02 5.27 77.96 0.41 79.00 3.54 80.06 5.32 78.00 0.50 79.04 3.54 80.06 5.32 78.00 0.50 79.04 3.54 80.06 5.37 78.04 0.58 79.08 3.68 80.12 5.40 78.06 0.63 79.10 3.75 80.14 5.45 78.04 0.58 79.02 4.00 80.24 5.56 78.10 0.73 79.14 3.88 80.18 5.48 78.10 0.73 79.14 3.88 80.18 5.48 78.10 0.73 79.14 3.88 80.20 5.51 78.16 0.88 79.20 4.00 80.24 5.56 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
77.760.11 78.80 2.81 79.84 5.02 77.78 0.13 78.82 2.87 79.86 5.05 77.80 0.15 78.84 2.91 79.88 5.07 77.82 0.18 78.86 2.96 79.90 5.10 77.84 0.21 78.88 3.00 79.92 5.16 77.86 0.24 78.90 3.03 79.94 5.16 77.86 0.24 78.92 3.07 79.96 5.19 77.90 0.30 78.94 3.16 79.98 5.21 77.92 0.34 78.96 3.24 80.00 5.24 77.94 0.38 78.98 3.31 80.02 5.27 77.96 0.41 79.00 3.39 80.04 5.29 77.96 0.41 79.02 3.46 80.06 5.32 78.00 0.50 79.04 3.54 80.08 5.35 78.02 0.54 79.02 3.61 80.10 5.37 78.04 0.58 79.08 3.68 80.12 5.40 78.06 0.63 79.10 3.75 80.14 5.43 78.08 0.68 79.12 3.82 80.16 5.45 78.10 0.73 79.16 3.93 80.20 5.51 78.14 0.83 79.22 4.00 80.24 5.56 78.14 0.83 79.24 4.07 80.28 5.61 78.22 1.04 79.26 4.11 80.30 5.63 78.24 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
77.780.13 78.82 2.87 79.86 5.05 77.80 0.15 78.84 2.91 79.88 5.07 77.82 0.18 78.86 2.96 79.90 5.10 77.84 0.21 78.88 3.00 79.92 5.13 77.86 0.24 78.90 3.03 79.94 5.16 77.86 0.24 78.92 3.07 79.96 5.19 77.90 0.30 78.94 3.16 79.98 5.21 77.92 0.34 78.96 3.24 80.00 5.24 77.96 0.41 79.00 3.39 80.04 5.29 77.96 0.41 79.02 3.46 80.06 5.32 78.00 0.50 79.04 3.54 80.08 5.35 78.02 0.54 79.06 3.61 80.10 5.37 78.04 0.58 79.08 3.68 80.12 5.40 78.06 0.63 79.10 3.75 80.14 5.43 78.10 0.73 79.14 3.88 80.18 5.48 78.12 0.78 79.16 3.93 80.20 5.51 78.14 0.88 79.22 4.04 80.26 5.58 78.22 1.04 79.26 4.14 80.30 5.63 78.22 1.04 79.26 4.14 80.30 5.63 78.22 1.04 79.26 4.14 80.30 5.63 78.22 1.04 79.26 4.14 80.30 5.63 78.32 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
77.800.15 78.84 2.91 79.88 5.07 77.82 0.18 78.86 2.96 79.90 5.10 77.84 0.21 78.88 3.03 79.94 5.16 77.86 0.24 78.90 3.03 79.94 5.16 77.86 0.24 78.90 3.03 79.94 5.16 77.88 0.27 78.92 3.07 79.96 5.19 77.90 0.30 78.94 3.16 79.98 5.21 77.92 0.34 78.96 3.2480.005.24 77.94 0.38 79.02 3.4680.005.24 77.94 0.38 79.02 3.4680.065.32 78.00 0.50 79.04 3.5480.085.35 78.02 0.54 79.06 3.6180.105.37 78.04 0.58 79.08 3.6880.125.40 78.06 0.63 79.10 3.7580.145.43 78.08 0.68 79.12 3.8280.165.45 78.10 0.73 79.14 3.8380.205.51 78.14 0.83 79.22 4.0480.265.58 78.20 0.99 79.24 4.0780.285.61 78.21 1.04 79.26 4.1180.305.63 78.22 1.04 79.36 4.2878.341.40 79.38 4.2478.341.4079.384.31 78.32 1.34 79.36 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
77.820.18 78.86 2.96 79.90 5.10 77.84 0.21 78.88 3.00 79.92 5.13 77.86 0.24 78.90 3.03 79.94 5.16 77.88 0.27 78.92 3.07 79.96 5.19 77.90 0.30 78.94 3.16 79.98 5.21 77.92 0.34 78.96 3.24 80.00 5.24 77.94 0.38 78.98 3.31 80.02 5.27 77.96 0.41 79.00 3.39 80.04 5.29 77.98 0.45 79.02 3.46 80.06 5.32 78.00 0.50 79.04 3.54 80.08 5.35 78.02 0.54 79.06 3.61 80.10 5.37 78.04 0.58 79.08 3.68 80.12 5.40 78.06 0.63 79.10 3.75 80.14 5.43 78.06 0.63 79.10 3.75 80.14 5.43 78.06 0.63 79.12 3.82 80.16 5.45 78.10 0.73 79.14 3.88 80.18 5.48 78.12 0.78 79.16 3.93 80.20 5.51 78.14 0.88 79.20 4.00 80.24 5.56 78.18 0.93 79.22 4.04 80.26 5.58 78.20 0.99 79.24 4.07 80.28 5.61 78.32 1.04 79.36 4.28 78.34 1.40 78.32						
77.86 0.24 78.90 3.03 79.94 5.16 77.88 0.27 78.92 3.07 79.96 5.19 77.90 0.30 78.94 3.16 79.98 5.21 77.92 0.34 78.96 3.24 80.00 5.24 77.94 0.38 78.98 3.31 80.02 5.27 77.96 0.41 79.00 3.39 80.04 5.29 77.98 0.45 79.02 3.46 80.06 5.32 78.00 0.50 79.04 3.54 80.08 5.35 78.02 0.54 79.06 3.61 80.10 5.37 78.04 0.58 79.08 3.68 80.12 5.40 78.06 0.63 79.10 3.75 80.14 5.43 78.08 0.68 79.12 3.82 80.16 5.45 78.10 0.73 79.14 3.88 80.12 5.51 78.14 0.83 79.22 4.00 80.24 5.56 78.16 0.88 79.20 4.00 80.24 5.56 78.16 0.88 79.20 4.00 80.24 5.61 78.24 1.10 79.26 4.11 80.30 5.63 78.24 1.16 79.30 4.18 78.34 1.40 78.24 1.66 79.44 4.24 78.38 1.52 79.42 4.38 78.36 1.46 79.44 4.44 <t< td=""><td></td><td></td><td></td><td>2.96</td><td>79.90</td><td></td></t<>				2.96	79.90	
77.88 0.27 78.92 3.07 79.96 5.19 77.90 0.30 78.94 3.16 79.98 5.21 77.92 0.34 78.96 3.24 80.00 5.24 77.94 0.38 78.98 3.31 80.02 5.27 77.96 0.41 79.00 3.39 80.04 5.29 77.98 0.45 79.02 3.46 80.06 5.32 78.00 0.50 79.04 3.54 80.08 5.35 78.02 0.54 79.06 3.61 80.10 5.37 78.04 0.58 79.08 3.68 80.12 5.40 78.06 0.63 79.10 3.75 80.14 5.45 78.10 0.73 79.14 3.88 80.18 5.48 78.12 0.78 79.16 3.93 80.20 5.51 78.14 0.83 79.22 4.04 80.26 5.58 78.20 0.99 79.24 4.07 80.28 5.61 78.24 1.10 79.28 4.14 78.32 1.34 79.36 4.28 78.32 1.34 79.36 4.28 78.34 1.40 79.38 4.31 78.36 1.46 79.40 4.34 78.36 1.46 79.40 4.34 78.32 1.34 79.36 4.28 78.54 1.65 79.46 4.44 78.46 1.77 79.56 4.60 78.56						
77.90 0.30 78.94 3.16 79.98 5.21 77.92 0.34 78.96 3.24 80.00 5.24 77.94 0.38 78.98 3.31 80.02 5.27 77.96 0.41 79.00 3.39 80.04 5.29 77.98 0.45 79.02 3.46 80.06 5.32 78.00 0.50 79.04 3.54 80.08 5.35 78.02 0.54 79.06 3.61 80.10 5.37 78.04 0.58 79.08 3.68 80.12 5.40 78.04 0.58 79.08 3.68 80.12 5.40 78.04 0.58 79.08 3.68 80.12 5.40 78.04 0.58 79.10 3.75 80.14 5.43 78.04 0.58 79.16 3.93 80.20 5.51 78.10 0.73 79.14 3.88 80.18 5.48 78.12 0.78 79.16 3.93 80.20 5.51 78.14 0.83 79.22 4.00 80.24 5.56 78.16 0.88 79.22 4.04 80.26 5.58 78.20 0.99 79.24 4.07 80.28 5.61 78.22 1.04 79.26 4.11 80.30 5.63 78.24 1.10 79.36 4.28 78.34 1.40 78.38 1.52 79.44 4.24 78.38 1.52 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
77.92 0.34 78.96 3.24 80.00 5.24 77.94 0.38 78.98 3.31 80.02 5.27 77.96 0.41 79.00 3.39 80.04 5.29 77.98 0.45 79.02 3.46 80.06 5.32 78.00 0.50 79.04 3.54 80.08 5.35 78.02 0.54 79.06 3.61 80.10 5.37 78.04 0.58 79.08 3.68 80.12 5.40 78.06 0.63 79.10 3.75 80.14 5.43 78.08 0.68 79.12 3.82 80.16 5.45 78.10 0.73 79.14 3.88 80.18 5.48 78.12 0.78 79.16 3.93 80.20 5.51 78.14 0.83 79.22 4.00 80.24 5.56 78.14 0.83 79.22 4.04 80.26 5.58 78.22 1.04 79.26 4.11 80.30 5.63 78.24 1.10 79.28 4.14 78.32 5.63 78.30 1.28 79.34 4.24 78.36 1.46 79.44 4.41 78.46 1.77 79.50 4.51 78.54 1.65 79.46 4.44 78.46 1.77 79.56 4.60 78.56 2.10 79.60 4.66 78.58 2.16 79.62 4.69 4.69 4.69 4.69 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
78.241.10 79.28 4.14 78.26 1.16 79.30 4.18 78.28 1.22 79.32 4.21 78.30 1.28 79.34 4.24 78.32 1.34 79.36 4.28 78.34 1.40 79.38 4.31 78.36 1.46 79.40 4.34 78.38 1.52 79.42 4.38 78.40 1.58 79.44 4.41 78.42 1.65 79.46 4.44 78.44 1.71 79.50 4.51 78.48 1.84 79.52 4.54 78.50 1.90 79.54 4.57 78.52 1.97 79.56 4.60 78.54 2.03 79.58 4.63 78.56 2.10 79.60 4.66 78.58 2.16 79.62 4.69						
78.261.16 79.30 4.18 78.28 1.22 79.32 4.21 78.30 1.28 79.34 4.24 78.32 1.34 79.36 4.28 78.34 1.40 79.38 4.31 78.36 1.46 79.40 4.34 78.38 1.52 79.42 4.38 78.40 1.58 79.44 4.41 78.42 1.65 79.46 4.44 78.44 1.71 79.48 4.47 78.46 1.77 79.50 4.51 78.48 1.84 79.52 4.54 78.50 1.90 79.54 4.57 78.52 1.97 79.56 4.60 78.54 2.03 79.58 4.63 78.56 2.10 79.60 4.66 78.58 2.16 79.62 4.69					80.30	5.63
78.28 1.22 79.32 4.21 78.30 1.28 79.34 4.24 78.32 1.34 79.36 4.28 78.34 1.40 79.38 4.31 78.36 1.46 79.40 4.34 78.38 1.52 79.42 4.38 78.40 1.58 79.44 4.41 78.42 1.65 79.46 4.44 78.44 1.71 79.48 4.47 78.46 1.77 79.50 4.51 78.52 1.90 79.54 4.57 78.52 1.97 79.56 4.60 78.54 2.03 79.58 4.63 78.56 2.10 79.60 4.66 78.58 2.16 79.62 4.69						
78.30 1.28 79.34 4.24 78.32 1.34 79.36 4.28 78.34 1.40 79.38 4.31 78.36 1.46 79.40 4.34 78.38 1.52 79.42 4.38 78.40 1.58 79.44 4.41 78.42 1.65 79.46 4.44 78.44 1.71 79.48 4.47 78.46 1.77 79.50 4.51 78.48 1.84 79.52 4.54 78.50 1.90 79.54 4.57 78.52 1.97 79.56 4.60 78.54 2.03 79.58 4.63 78.56 2.10 79.60 4.66 78.58 2.16 79.62 4.69						
78.32 1.34 79.36 4.28 78.34 1.40 79.38 4.31 78.36 1.46 79.40 4.34 78.38 1.52 79.42 4.38 78.40 1.58 79.44 4.41 78.42 1.65 79.46 4.44 78.44 1.71 79.48 4.47 78.46 1.77 79.50 4.51 78.48 1.84 79.52 4.54 78.50 1.90 79.54 4.57 78.52 1.97 79.56 4.60 78.54 2.03 79.58 4.63 78.56 2.10 79.60 4.66 78.58 2.16 79.62 4.69						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1.46				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
78.501.9079.544.5778.521.9779.564.6078.542.0379.584.6378.562.1079.604.6678.582.1679.624.69						
78.521.9779.564.6078.542.0379.584.6378.562.1079.604.6678.582.1679.624.69						
78.56 2.10 79.60 4.66 78.58 2.16 79.62 4.69						
78.58 2.16 79.62 4.69						
10.00 2.22 19.04 4.12						
· · ·	10.00	2.22	19.04	4.72		

Prepared by Linden Engineering Partners, LLC HydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC

Page 46

Stage-Area-Storage for Pond 14R: DCB#3-DMH#2

77.58 0.000 78.62 0.000 79.66 0.000 77.60 0.000 78.64 0.000 79.68 0.000 77.62 0.000 78.66 0.000 79.70 0.000 77.64 0.000 78.70 0.000 79.72 0.000 77.66 0.000 78.72 0.000 79.76 0.000 77.72 0.000 78.74 0.000 79.80 0.000 77.74 0.000 78.78 0.000 79.80 0.000 77.74 0.000 78.80 0.000 79.84 0.000 77.78 0.000 78.84 0.000 79.86 0.000 77.80 0.000 78.84 0.000 79.94 0.000 77.84 0.000 78.92 0.000 79.94 0.000 77.84 0.000 78.94 0.000 79.96 0.000 77.92 0.000 78.96 0.000 80.04 0.000	Elevation	Storage	Elevation	Storage	Elevation	Storage
77.60 0.000 78.64 0.000 79.68 0.000 77.62 0.000 78.66 0.000 79.70 0.000 77.66 0.000 78.70 0.000 79.72 0.000 77.66 0.000 78.72 0.000 79.76 0.000 77.70 0.000 78.74 0.000 79.78 0.000 77.72 0.000 78.76 0.000 79.82 0.000 77.76 0.000 78.82 0.000 79.86 0.000 77.76 0.000 78.84 0.000 79.86 0.000 77.80 0.000 78.84 0.000 79.92 0.000 77.84 0.000 78.88 0.000 79.94 0.000 77.84 0.000 78.94 0.000 79.98 0.000 77.90 0.000 78.94 0.000 79.98 0.000 77.94 0.000 79.04 0.000 80.14 0.000	(feet)	(acre-feet)	(feet)	(acre-feet)	(feet)	(acre-feet)
77.62 0.000 78.66 0.000 79.70 0.000 77.66 0.000 78.70 0.000 79.74 0.000 77.66 0.000 78.72 0.000 79.76 0.000 77.70 0.000 78.74 0.000 79.78 0.000 77.72 0.000 78.76 0.000 79.80 0.000 77.74 0.000 78.78 0.000 79.80 0.000 77.78 0.000 78.82 0.000 79.84 0.000 77.80 0.000 78.84 0.000 79.90 0.000 77.80 0.000 78.84 0.000 79.92 0.000 77.84 0.000 78.92 0.000 79.94 0.000 77.84 0.000 78.92 0.000 79.93 0.000 77.90 0.000 78.98 0.000 80.02 0.000 77.96 0.000 79.92 0.000 80.06 0.000						
77.64 0.000 78.70 0.000 79.72 0.000 77.66 0.000 78.70 0.000 79.74 0.000 77.76 0.000 78.72 0.000 79.76 0.000 77.70 0.000 78.74 0.000 79.78 0.000 77.72 0.000 78.78 0.000 79.82 0.000 77.74 0.000 78.82 0.000 79.84 0.000 77.78 0.000 78.82 0.000 79.88 0.000 77.82 0.000 78.84 0.000 79.92 0.000 77.84 0.000 78.84 0.000 79.92 0.000 77.84 0.000 78.94 0.000 79.98 0.000 77.90 0.000 78.94 0.000 79.98 0.000 77.94 0.000 79.02 0.000 80.04 0.000 77.94 0.000 79.02 0.000 80.06 0.000						
77.66 0.000 78.72 0.000 79.74 0.000 77.70 0.000 78.74 0.000 79.76 0.000 77.72 0.000 78.76 0.000 79.80 0.000 77.74 0.000 78.76 0.000 79.82 0.000 77.76 0.000 78.80 0.000 79.84 0.000 77.76 0.000 78.82 0.000 79.88 0.000 77.80 0.000 78.84 0.000 79.98 0.000 77.84 0.000 78.88 0.000 79.98 0.000 77.84 0.000 78.94 0.000 79.94 0.000 77.86 0.000 78.94 0.000 79.94 0.000 77.92 0.000 78.94 0.000 79.98 0.000 77.92 0.000 79.02 0.000 80.04 0.000 77.94 0.000 79.02 0.000 80.06 0.000						
77.68 0.000 78.72 0.000 79.76 0.000 77.70 0.000 78.74 0.000 79.78 0.000 77.72 0.000 78.76 0.000 79.80 0.000 77.74 0.000 78.80 0.000 79.82 0.000 77.76 0.000 78.82 0.000 79.84 0.000 77.78 0.000 78.82 0.000 79.88 0.000 77.80 0.000 78.84 0.000 79.92 0.000 77.86 0.000 78.88 0.000 79.92 0.000 77.86 0.000 78.94 0.000 79.94 0.000 77.86 0.000 78.94 0.000 79.98 0.000 77.90 0.000 78.94 0.000 80.02 0.000 77.94 0.000 79.02 0.000 80.04 0.000 78.00 0.000 79.04 0.000 80.16 0.000						
77.70 0.000 78.74 0.000 79.78 0.000 77.72 0.000 78.76 0.000 79.80 0.000 77.74 0.000 78.80 0.000 79.82 0.000 77.76 0.000 78.82 0.000 79.86 0.000 77.80 0.000 78.84 0.000 79.88 0.000 77.81 0.000 78.86 0.000 79.92 0.000 77.84 0.000 78.99 0.000 79.92 0.000 77.86 0.000 78.94 0.000 79.92 0.000 77.90 0.000 78.94 0.000 79.98 0.000 77.92 0.000 78.98 0.000 80.04 0.000 77.94 0.000 79.90 0.000 80.04 0.000 77.98 0.000 79.02 0.000 80.04 0.000 78.02 0.000 79.04 0.000 80.14 0.000						
77.720.000 78.76 0.000 79.80 0.000 77.74 0.000 78.78 0.000 79.82 0.000 77.76 0.000 78.82 0.000 79.84 0.000 77.78 0.000 78.82 0.000 79.86 0.000 77.80 0.000 78.84 0.000 79.86 0.000 77.80 0.000 78.84 0.000 79.90 0.000 77.84 0.000 78.88 0.000 79.92 0.000 77.86 0.000 78.92 0.000 79.94 0.000 77.86 0.000 78.92 0.000 79.96 0.000 77.92 0.000 78.94 0.000 79.96 0.000 77.94 0.000 79.02 0.000 80.04 0.000 77.96 0.000 79.02 0.000 80.06 0.000 78.00 0.000 79.02 0.000 80.06 0.000 78.00 0.000 79.08 0.000 80.14 0.000 78.00 0.000 79.14 0.000 80.14 0.000 78.00 0.000 79.14 0.000 80.14 0.000 78.00 0.000 79.14 0.000 80.14 0.000 78.00 0.000 79.14 0.000 80.14 0.000 78.00 0.000 79.14 0.000 80.14 0.000 78.00 0.000 79.14 0.000 80.16 0.000 78.16 0.000 79.14 0.0						
77.74 0.000 78.78 0.000 79.82 0.000 77.76 0.000 78.80 0.000 79.84 0.000 77.80 0.000 78.84 0.000 79.86 0.000 77.80 0.000 78.84 0.000 79.88 0.000 77.82 0.000 78.86 0.000 79.92 0.000 77.84 0.000 78.92 0.000 79.94 0.000 77.84 0.000 78.92 0.000 79.98 0.000 77.90 0.000 78.94 0.000 79.98 0.000 77.92 0.000 78.96 0.000 80.04 0.000 77.94 0.000 79.92 0.000 80.04 0.000 77.94 0.000 79.02 0.000 80.04 0.000 77.98 0.000 79.04 0.000 80.04 0.000 78.02 0.000 79.04 0.000 80.12 0.000 78.04 0.000 79.14 0.000 80.14 0.000						
77.760.000 78.80 0.000 79.86 0.000 77.78 0.000 78.82 0.000 79.86 0.000 77.80 0.000 78.84 0.000 79.86 0.000 77.82 0.000 78.86 0.000 79.92 0.000 77.86 0.000 78.92 0.000 79.94 0.000 77.86 0.000 78.92 0.000 79.94 0.000 77.90 0.000 78.94 0.000 79.98 0.000 77.92 0.000 78.98 0.00080.020.000 77.94 0.000 79.00 0.00080.040.000 77.96 0.000 79.04 0.00080.060.000 77.98 0.000 79.04 0.00080.060.000 78.02 0.000 79.04 0.00080.060.000 78.02 0.000 79.06 0.00080.100.000 78.04 0.000 79.14 0.00080.120.000 78.04 0.000 79.14 0.00080.140.000 78.02 0.000 79.14 0.00080.140.000 78.10 0.000 79.14 0.00080.140.000 78.14 0.000 79.14 0.00080.220.000 78.14 0.000 79.14 0.00080.220.000 78.16 0.000 79.22 0.00080.260.000 78.16 0.000 79.26 0.00080.280						
77.780.000 78.82 0.000 79.86 0.000 77.80 0.000 78.84 0.000 79.98 0.000 77.82 0.000 78.86 0.000 79.92 0.000 77.86 0.000 78.90 0.000 79.92 0.000 77.86 0.000 78.92 0.000 79.94 0.000 77.90 0.000 78.92 0.000 79.96 0.000 77.90 0.000 78.94 0.000 79.98 0.000 77.94 0.000 78.98 0.000 80.02 0.000 77.94 0.000 79.00 0.000 80.04 0.000 77.94 0.000 79.02 0.000 80.04 0.000 77.98 0.000 79.06 0.000 80.04 0.000 78.00 0.000 79.06 0.000 80.14 0.000 78.06 0.000 79.10 0.000 80.12 0.000 78.06 0.000 79.12 0.000 80.14 0.000 78.10 0.000 79.14 0.000 80.22 0.000 78.14 0.000 79.22 0.000 80.24 0.000 78.22 0.000 79.22 0.000 80.24 0.000 78.14 0.000 79.22 0.000 80.24 0.000 78.16 0.000 79.22 0.000 80.24 0.000 78.22 0.000 79.24 0.000 80.24 0.000 78.44 0.000 79.32 0.0						
77.80 0.000 78.84 0.000 79.88 0.000 77.82 0.000 78.86 0.000 79.92 0.000 77.86 0.000 78.90 0.000 79.94 0.000 77.86 0.000 78.92 0.000 79.94 0.000 77.90 0.000 78.92 0.000 79.98 0.000 77.90 0.000 78.94 0.000 79.98 0.000 77.92 0.000 78.96 0.000 80.02 0.000 77.96 0.000 79.02 0.000 80.04 0.000 77.96 0.000 79.02 0.000 80.04 0.000 77.98 0.000 79.02 0.000 80.06 0.000 78.00 0.000 79.04 0.000 80.08 0.000 78.00 0.000 79.08 0.000 80.14 0.000 78.04 0.000 79.10 0.000 80.14 0.000 78.06 0.000 79.14 0.000 80.14 0.000 78.10 0.000 79.14 0.000 80.22 0.000 78.14 0.000 79.20 0.000 80.24 0.000 78.14 0.000 79.20 0.000 80.24 0.000 78.14 0.000 79.20 0.000 80.24 0.000 78.16 0.000 79.20 0.000 80.24 0.000 78.16 0.000 7						
77.82 0.000 78.86 0.000 79.90 0.000 77.84 0.000 78.88 0.000 79.92 0.000 77.86 0.000 78.92 0.000 79.94 0.000 77.88 0.000 78.92 0.000 79.98 0.000 77.92 0.000 78.94 0.000 79.98 0.000 77.92 0.000 78.94 0.000 80.02 0.000 77.94 0.000 78.98 0.000 80.02 0.000 77.96 0.000 79.02 0.000 80.04 0.000 77.98 0.000 79.02 0.000 80.04 0.000 78.00 0.000 79.04 0.000 80.04 0.000 78.00 0.000 79.04 0.000 80.10 0.000 78.00 0.000 79.14 0.000 80.12 0.000 78.04 0.000 79.12 0.000 80.14 0.000 78.16 0.000 79.14 0.000 80.18 0.000 78.14 0.000 79.22 0.000 80.22 0.000 78.16 0.000 79.22 0.000 80.24 0.000 78.24 0.000 79.24 0.000 80.22 0.000 78.16 0.000 79.24 0.000 80.22 0.000 78.16 0.000 79.24 0.000 80.24 0.000 78.24 0.000 $79.$						
77.84 0.000 78.88 0.000 79.92 0.000 77.86 0.000 78.92 0.000 79.96 0.000 77.90 0.000 78.92 0.000 79.96 0.000 77.90 0.000 78.96 0.000 79.96 0.000 77.92 0.000 78.96 0.000 80.02 0.000 77.94 0.000 78.98 0.000 80.02 0.000 77.96 0.000 79.00 0.000 80.04 0.000 77.96 0.000 79.02 0.000 80.06 0.000 78.02 0.000 79.02 0.000 80.16 0.000 78.02 0.000 79.06 0.000 80.12 0.000 78.04 0.000 79.10 0.000 80.14 0.000 78.06 0.000 79.12 0.000 80.14 0.000 78.10 0.000 79.14 0.000 80.16 0.000 78.12 0.000 79.22 0.000 80.22 0.000 78.14 0.000 79.22 0.000 80.24 0.000 78.22 0.000 79.24 0.000 80.24 0.000 78.14 0.000 79.24 0.000 80.24 0.000 78.24 0.000 79.24 0.000 80.26 0.000 78.24 0.000 79.24 0.000 80.26 0.000 78.26 0.000 7						
77.88 0.000 78.92 0.000 79.96 0.000 77.92 0.000 78.94 0.000 79.98 0.000 77.92 0.000 78.96 0.000 80.02 0.000 77.94 0.000 79.00 0.000 80.04 0.000 77.96 0.000 79.02 0.000 80.04 0.000 77.98 0.000 79.02 0.000 80.06 0.000 78.00 0.000 79.04 0.000 80.08 0.000 78.02 0.000 79.06 0.000 80.14 0.000 78.06 0.000 79.10 0.000 80.14 0.000 78.06 0.000 79.10 0.000 80.14 0.000 78.10 0.000 79.14 0.000 80.18 0.000 78.12 0.000 79.16 0.000 80.22 0.000 78.14 0.000 79.22 0.000 80.24 0.000 78.14 0.000 79.24 0.000 80.28 0.000 78.22 0.000 79.24 0.000 80.28 0.000 78.24 0.000 79.34 0.000 80.28 0.000 78.26 0.000 79.36 0.000 78.36 0.000 78.36 0.000 79.44 0.000 78.34 0.000 78.36 0.000 79.44 0.000 78.34 0.000 78.36 0.000 7						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	77.86	0.000	78.90	0.000	79.94	0.000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	77.88	0.000	78.92	0.000		0.000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	78.18	0.000	79.22		80.26	0.000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
78.26 0.000 79.30 0.000 78.28 0.000 79.32 0.000 78.30 0.000 79.34 0.000 78.32 0.000 79.36 0.000 78.34 0.000 79.38 0.000 78.36 0.000 79.40 0.000 78.38 0.000 79.42 0.000 78.40 0.000 79.44 0.000 78.42 0.000 79.48 0.000 78.44 0.000 79.48 0.000 78.48 0.000 79.50 0.000 78.50 0.000 79.54 0.000 78.52 0.000 79.56 0.000 78.54 0.000 79.58 0.000 78.56 0.000 79.60 0.000 78.58 0.000 79.62 0.000					80.30	0.000
78.28 0.000 79.32 0.000 78.30 0.000 79.34 0.000 78.32 0.000 79.36 0.000 78.34 0.000 79.38 0.000 78.36 0.000 79.40 0.000 78.38 0.000 79.42 0.000 78.40 0.000 79.44 0.000 78.42 0.000 79.46 0.000 78.44 0.000 79.48 0.000 78.46 0.000 79.50 0.000 78.48 0.000 79.52 0.000 78.50 0.000 79.54 0.000 78.52 0.000 79.58 0.000 78.54 0.000 79.58 0.000 78.56 0.000 79.60 0.000 78.58 0.000 79.62 0.000						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
78.460.00079.500.00078.480.00079.520.00078.500.00079.540.00078.520.00079.560.00078.540.00079.580.00078.560.00079.600.00078.580.00079.620.000						
78.500.00079.540.00078.520.00079.560.00078.540.00079.580.00078.560.00079.600.00078.580.00079.620.000	78.46	0.000	79.50	0.000		
78.520.00079.560.00078.540.00079.580.00078.560.00079.600.00078.580.00079.620.000						
78.540.00079.580.00078.560.00079.600.00078.580.00079.620.000						
78.56 0.000 79.60 0.000 78.58 0.000 79.62 0.000						
78.58 0.000 79.62 0.000						
	78.58 78.60	0.000	79.62 79.64	0.000		
	70.00	0.000	79.04	0.000		

KING RAIL DEVELOPED STORMWATER CALCULATIONS **KRAIL-DEV2** Type III 24-hr 100 year Rainfall=6.50" Prepared by Linden Engineering Partners, LLC HydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC

Page 47

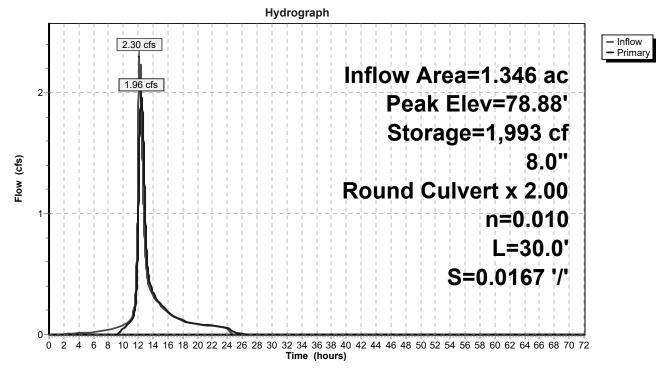
Summary for Pond IB#1: NEW IB#1

Inflow Area	a =	1.346 ac,	0.00% Impervious, Inflow De	epth = 2.90" for 100 year event		
Inflow	=	2.30 cfs @	12.10 hrs, Volume=	0.326 af		
Outflow	=	1.96 cfs @	12.44 hrs, Volume=	0.313 af, Atten= 15%, Lag= 20.4 min		
Primary	=	1.96 cfs @	12.44 hrs, Volume=	0.313 af		
Routed to Reach 3269R : DIRECT FLOW TO RM						

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 78.88' @ 12.44 hrs Surf.Area= 1,928 sf Storage= 1,993 cf

Plug-Flow detention time= 59.6 min calculated for 0.313 af (96% of inflow) Center-of-Mass det. time= 36.8 min (865.8 - 828.9)

Volume	Inv	vert Avail.St	orage Stor	age Description			
#1	77.	50' 2,	229 cf Cus	tom Stage Data (P	rismatic)Listed below (Recalc)		
Elevatio (fee 77.5 78.0 79.0	et) 50 00	Surf.Area (sq-ft) 976 1,304 2,013	Inc.Store (cubic-feet (570 1,659	(cubic-feet) 0 0 0 570			
Device	Routing	Inver	t Outlet De	vices			
#1	Primary	78.00	Inlet / Out	8.0" Round Culvert X 2.00 L= 30.0' Ke= 0.900 Inlet / Outlet Invert= 78.00' / 77.50' S= 0.0167 '/' Cc= 0.900 n= 0.010, Flow Area= 0.35 sf			


Primary OutFlow Max=1.96 cfs @ 12.44 hrs HW=78.88' TW=0.00' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 1.96 cfs @ 2.81 fps)

KING RAIL DEVELOPED STORMWATER CALCULATIONS Type III 24-hr 100 year Rainfall=6.50"

Prepared by Linden Engineering Partners, LLC HydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC

Page 48

Pond IB#1: NEW IB#1

KRAIL-DEV2

KING RAIL DEVELOPED STORMWATER CALCULATIONS

Type III 24-hr 100 year Rainfall=6.50"

Prepared by Linden Engineering Partners, LLC HydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC

Page 49

Stage-Discharge for Pond IB#1: NEW IB#1

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
77.630.0078.150.1278.671.5477.640.0078.160.1478.681.5677.650.0078.170.1678.691.5877.660.0078.180.1778.701.6177.670.0078.190.1978.711.6377.680.0078.200.2178.721.6577.690.0078.210.2378.731.6777.700.0078.220.2578.741.69
77.640.0078.160.1478.681.5677.650.0078.170.1678.691.5877.660.0078.180.1778.701.6177.670.0078.190.1978.711.6377.680.0078.200.2178.721.6577.690.0078.210.2378.731.6777.700.0078.220.2578.741.69
77.650.0078.170.1678.691.5877.660.0078.180.1778.701.6177.670.0078.190.1978.711.6377.680.0078.200.2178.721.6577.690.0078.210.2378.731.6777.700.0078.220.2578.741.69
77.660.0078.180.1778.701.6177.670.0078.190.1978.711.6377.680.0078.200.2178.721.6577.690.0078.210.2378.731.6777.700.0078.220.2578.741.69
77.670.0078.190.1978.711.6377.680.0078.200.2178.721.6577.690.0078.210.2378.731.6777.700.0078.220.2578.741.69
77.680.0078.200.2178.721.6577.690.0078.210.2378.731.6777.700.0078.220.2578.741.69
77.690.0078.210.2378.731.6777.700.0078.220.2578.741.69
77.70 0.00 78.22 0.25 78.74 1.69
77.72 0.00 78.23 0.26 76.73 1.71 77.72 0.00 78.24 0.30 78.76 1.73
77.73 0.00 78.25 0.32 78.77 1.75
77.74 0.00 78.26 0.35 78.78 1.77
77.75 0.00 78.27 0.37 78.79 1.79
77.76 0.00 78.28 0.40 78.80 1.81
77.77 0.00 78.29 0.42 78.81 1.83
77.78 0.00 78.30 0.45 78.82 1.85
77.79 0.00 78.31 0.48 78.83 1.87
77.80 0.00 78.32 0.50 78.84 1.89
77.81 0.00 78.33 0.53 78.85 1.91
77.82 0.00 78.34 0.56 78.86 1.93
77.83 0.00 78.35 0.59 78.87 1.94
77.84 0.00 78.36 0.62 78.88 1.96
77.85 0.00 78.37 0.65 78.89 1.98
77.86 0.00 78.38 0.68 78.90 2.00
77.87 0.00 78.39 0.71 78.91 2.02
77.88 0.00 78.40 0.74 78.92 2.03
77.89 0.00 78.41 0.78 78.93 2.05
77.90 0.00 78.42 0.81 78.94 2.07
77.91 0.00 78.43 0.84 78.95 2.08
77.92 0.00 78.44 0.87 78.96 2.10
77.93 0.00 78.45 0.90 78.97 2.12
77.94 0.00 78.46 0.94 78.98 2.13
77.95 0.00 78.47 0.97 78.99 2.15
77.96 0.00 78.48 1.00 79.00 2.17
77.97 0.00 78.49 1.03
77.98 0.00 78.50 1.07 77.99 0.00 78.51 1.10
78.00 0.00 78.52 1.13
78.00 0.00 78.52 1.13

Prepared by Linden Engineering Partners, LLC HydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC

Page 50

Stage-Area-Storage for Pond IB#1: NEW IB#1

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
77.50	976	0	78.54	1,687	1,378
77.52	989	20	78.56	1,701	1,411
77.54	1,002	40	78.58	1,715	1,446
77.56	1,015	60	78.60	1,729	1,480
77.58	1,028	80	78.62	1,744	1,515
77.60	1,042	101	78.64	1,758	1,550
77.62	1,055	122	78.66	1,772	1,585
77.64	1,068	143	78.68	1,786	1,621
77.66	1,081	165	78.70	1,800	1,657
77.68	1,094	186	78.72	1,814	1,693
77.70	1,107	208	78.74	1,829	1,729
77.72	1,120	231	78.76	1,843	1,766
77.74	1,133	253	78.78	1,857	1,803
77.76	1,147	276	78.80	1,871	1,840
77.78	1,160	299	78.82	1,885	1,878
77.80	1,173	322	78.84	1,900	1,915
77.82	1,186	346	78.86	1,914	1,954
77.84	1,199	370	78.88	1,928	1,992
77.86	1,212	394	78.90	1,942	2,031
77.88	1,225	418	78.92	1,956	2,070
77.90	1,238	443	78.94	1,970	2,109
77.92	1,252	468	78.96	1,985	2,149
77.94 77.96	1,265	493	78.98	1,999	2,188
77.98	1,278 1,291	518 544	79.00	2,013	2,229
78.00	1,304	570			
78.02	1,318	596			
78.04	1,332	623			
78.06	1,347	650			
78.08	1,361	677			
78.10	1,375	704			
78.12	1,389	732			
78.14	1,403	760			
78.16	1,417	788			
78.18	1,432	816			
78.20	1,446	845			
78.22	1,460	874			
78.24	1,474	903			
78.26	1,488	933			
78.28	1,503	963			
78.30	1,517	993			
78.32	1,531	1,024			
78.34	1,545	1,054			
78.36	1,559	1,085			
78.38 78.40	1,573 1,588	1,117			
78.40	1,588	1,148 1,180			
78.42 78.44	1,612	1,100			
78.46	1,630	1,245			
78.48	1,644	1,243			
78.50	1,659	1,311			
78.52	1,673	1,344			
			l		

KING RAIL DEVELOPED STORMWATER CALCULATIONS **KRAIL-DEV2** Type III 24-hr 100 year Rainfall=6.50" Prepared by Linden Engineering Partners, LLC HydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC

Page 51

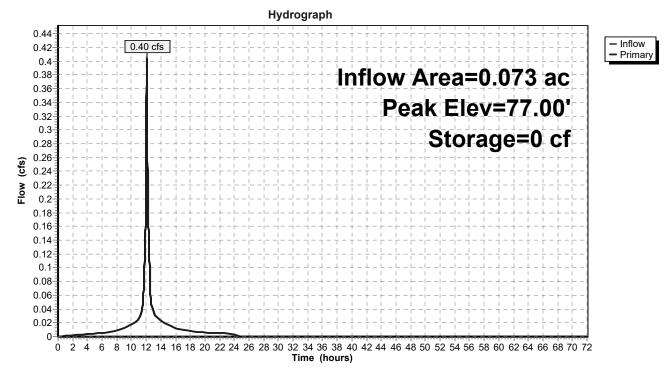
Summary for Pond IB#2: IB#2

Inflow Area =	0.073 ac, 74.45% Impervious, Inflow	Depth = 5.36" for 100 year event					
Inflow =	0.40 cfs @ 12.08 hrs, Volume=	0.032 af					
Outflow =	0.40 cfs @ 12.08 hrs, Volume=	0.032 af, Atten= 0%, Lag= 0.0 min					
Primary =	0.40 cfs @ 12.08 hrs, Volume=	0.032 af					
Routed to Reach 3269R : DIRECT FLOW TO RM							

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 77.00' @ 0.00 hrs Surf.Area= 180 sf Storage= 0 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.0 min (757.2 - 757.2)

Volume	Inv	ert Avail.Sto	rage St	orage Descriptio	n	
#1	77.	00' 6	30 cf C ι	stom Stage Da	ata (Pri	smatic)Listed below (Recalc)
Elevatio (fee 77.0 78.0 78.5 79.0	et) 00 00 50	Surf.Area (sq-ft) 180 310 378 475	1			
Device	Routing	Invert	Outlet D	evices		
#1	Primary	50.00'	Head (fe 2.50 3.0 Coef. (E	et) 0.20 0.40 0 3.50	0.60 0	ad-Crested Rectangular Weir 0.80 1.00 1.20 1.40 1.60 1.80 2.00 1 2.60 2.66 2.70 2.77 2.89 2.88


Primary OutFlow Max=0.00 cfs @ 12.08 hrs HW=77.00' TW=0.00' (Dynamic Tailwater) **1=Broad-Crested Rectangular Weir** (Passes 0.00 cfs of 13,973.49 cfs potential flow)

KING RAIL DEVELOPED STORMWATER CALCULATIONS Type III 24-hr 100 year Rainfall=6.50"

Prepared by Linden Engineering Partners, LLC HydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC

Page 52

Pond IB#2: IB#2

KING RAIL DEVELOPED STORMWATER CALCULATIONS Type III 24-hr 100 year Rainfall=6.50"

Prepared by Linden Engineering Partners, LLC HydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC Page 53

Stage-Discharge for Pond IB#2: IB#2

				_			
Elevation	Primary	Elevation	Primary	Elevation	Primary	Elevation	Primary
(feet)	(cfs)	(feet)	(cfs)	(feet)	(cfs)	(feet)	(cfs)
77.00	0.00	77.52	14,379.11	78.04	14,788.58	78.56	15,201.86
77.01	13,981.26	77.53	14,386.95	78.05	14,796.49	78.57	15,209.84
77.02	13,989.02	77.54	14,394.79	78.06	14,804.40	78.58	15,217.83
77.03	13,996.79	77.55	14,402.63	78.07	14,812.32	78.59	15,225.82
77.04	14,004.56	77.56	14,410.47	78.08	14,820.23	78.60	15,233.80
77.05	14,012.33	77.57	14,418.31	78.09	14,828.15	78.61	15,241.80
77.06	14,020.10	77.58	14,426.16	78.10	14,836.07	78.62	15,249.79
77.07	14,027.87	77.59	14,434.01	78.11	14,843.99	78.63	15,257.78
77.08	14,035.64	77.60	14,441.85	78.12	14,851.91	78.64	15,265.78
77.09	14,043.42	77.61	14,449.70	78.13	14,859.83	78.65	15,273.77
77.10	14,051.20	77.62	14,457.55	78.14	14,867.76	78.66	15,281.77
77.11	14,058.97	77.63	14,465.41	78.15	14,875.68	78.67	15,289.77
77.12	14,066.75	77.64	14,473.26	78.16	14,883.61	78.68	15,297.77
77.13	14,074.53	77.65	14,481.12	78.17	14,891.54	78.69	15,305.77
77.14	14,082.32	77.66	14,488.97	78.18	14,899.47	78.70	15,313.77
77.15	14,090.10	77.67	14,496.83	78.19	14,907.40	78.71	15,321.78
77.16	14,097.89	77.68	14,504.69	78.20	14,915.33	78.72	15,329.78
77.17	14,105.67	77.69	14,512.55	78.21	14,923.27	78.73	15,337.79
77.18	14,113.46	77.70	14,520.41	78.22	14,931.20	78.74	15,345.80
77.19	14,121.25	77.71	14,528.28	78.23	14,939.14	78.75	15,353.81
77.20	14,129.04	77.72	14,536.14	78.24	14,947.08	78.76	15,361.82
77.21	14,136.83	77.73	14,544.01	78.25	14,955.02	78.77	15,369.83
77.22	14,144.63	77.74	14,551.88	78.26	14,962.96	78.78	15,377.85
77.23	14,152.42	77.75	14,559.75	78.27	14,970.90	78.79	15,385.86
77.24	14,160.22	77.76	14,567.62	78.28	14,978.85	78.80	15,393.88
77.25	14,168.02	77.77	14,575.49	78.29	14,986.79	78.81	15,401.90
77.26	14,175.82	77.78	14,583.36	78.30	14,994.74	78.82	15,409.92
77.27	14,183.62	77.79	14,591.24	78.31	15,002.69	78.83	15,417.94
77.28	14,191.42	77.80	14,599.12	78.32	15,010.64	78.84	15,425.96
77.29	14,199.23	77.81	14,606.99	78.33	15,018.59	78.85	15,433.98
77.30	14,207.03	77.82	14,614.87	78.34	15,026.54	78.86	15,442.01
77.31	14,214.84	77.83	14,622.75	78.35	15,034.50	78.87	15,450.04
77.32	14,222.65	77.84	14,630.64	78.36	15,042.45	78.88	15,458.06
77.33	14,230.45	77.85	14,638.52	78.37	15,050.41	78.89	15,466.09
77.34	14,238.27	77.86	14,646.40	78.38	15,058.37	78.90	15,474.13
77.35	14,246.08	77.87	14,654.29	78.39	15,066.33	78.91	15,482.16
77.36	14,253.89	77.88	14,662.18	78.40	15,074.29	78.92	15,490.19
77.37	14,261.71	77.89	14,670.07	78.41	15,082.25	78.93	15,498.23
77.38	14,269.52	77.90	14,677.96	78.42	15,090.22	78.94	15,506.26
77.39	14,277.34	77.91	14,685.85	78.43	15,098.18	78.95	15,514.30
77.40	14,285.16	77.92	14,693.74	78.44	15,106.15	78.96	15,522.34
77.41	14,292.98	77.93	14,701.64	78.45	15,114.12	78.97	15,530.38
77.42	14,300.81	77.94	14,709.53	78.46	15,122.09	78.98	15,538.42
77.43	14,308.63	77.95	14,717.43	78.47	15,130.06	78.99	15,546.47
77.44	14,316.46	77.96	14,725.33	78.48	15,138.03	79.00	15,554.51
77.45	14,324.28	77.97	14,733.23	78.49	15,146.00		
77.46	14,332.11	77.98	14,741.13	78.50	15,153.98		
77.47	14,339.94	77.99	14,749.04	78.51	15,161.95		
77.48	14,347.77	78.00	14,756.94	78.52	15,169.93		
77.49 77.50	14,355.60 14,363.44	78.01 78.02	14,764.85 14,772.76	78.53	15,177.91 15,185.89		
77.50	14,363.44 14,371.27	78.02	14,772.76	78.54 78.55	15,165.69		
11.01	14,371.27	10.03	14,700.07	10.00	15,185.07	1	

Prepared by Linden Engineering Partners, LLC HydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC

Page 54

Stage-Area-Storage for Pond IB#2: IB#2

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
77.00	180	0	78.04	315	258
77.02	183	4	78.06	318	264
77.04	185	7	78.08	321	270
77.06	188	11	78.10	324	277
77.08	190	15	78.12	326	283
77.10	193	19	78.14	329	290
77.12	196	23	78.16	332	296
77.14	198	26	78.18	334	303
77.16	201	30	78.20	337	310
77.18	203	35	78.22	340	316
77.20	206	39	78.24	343	323
77.22	209	43	78.26	345	330
77.24	211	47	78.28	348	337
77.26	214	51	78.30	351	344
77.28	216	55	78.32	354	351
77.30	219	60	78.34	356	358
77.32	222	64	78.36	359	365
77.34	224	69	78.38	362	373
77.36	227	73	78.40	364	380
77.38	229	78	78.42	367	387
77.40	232	82	78.44	370	395
77.42	235	87	78.46	373	402
77.44	237	92	78.48	375	409
77.46	240	97	78.50	378	417
77.48	242	101	78.52	382	425
77.50	245	106	78.54	386	432
77.52	248	111	78.56	390	440
77.54	250	116	78.58	394	448
77.56	253	121	78.60	397	456
77.58	255	126	78.62	401	464
77.60	258	131	78.64	405	472
77.62	261	137	78.66	409	480
77.64	263	142	78.68	413	488
77.66	266	147	78.70	417	496
77.68	268	152	78.72	421	505
77.70	271	158	78.74	425	513
77.72	274	163	78.76	428	522
77.74	276	169	78.78	432	530
77.76	279	174	78.80	436	539
77.78	281	180	78.82	440	548
77.80	284	186	78.84	444	557
77.82	287	191	78.86	448	566
77.84	289	197	78.88	452	575
77.86	292	203	78.90	456	584
77.88	294	209	78.92	459	593
77.90	297	215	78.94	463	602
77.92	300	221	78.96	467	611
77.94	302	227	78.98	471	621
77.96	305	233	79.00	475	630
77.98	307	239			
78.00	310	245			
78.02	313	251			

 KING RAIL DEVELOPED STORMWATER CALCULATIONS

 KRAIL-DEV2

 Type III 24-hr 100 year Rainfall=6.50"

 Prepared by Linden Engineering Partners, LLC

 HydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC
 Page 55

Summary for Pond SSIB#1: SSIB#1

0.771 ac, 74.90% Impervious, Inflow Depth = 5.17" for 100 year event Inflow Area = Inflow 4.68 cfs @ 12.00 hrs, Volume= 0.332 af = 3.93 cfs @ 12.05 hrs, Volume= Outflow 0.284 af, Atten= 16%, Lag= 2.7 min = 3.93 cfs @ 12.05 hrs, Volume= 0.284 af Primary = Routed to Reach 16R : FLOW THRIOUGH NEW 18" PIPE Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3

Peak Elev= 79.18' @ 12.05 hrs Surf.Area= 1,652 sf Storage= 3,019 cf

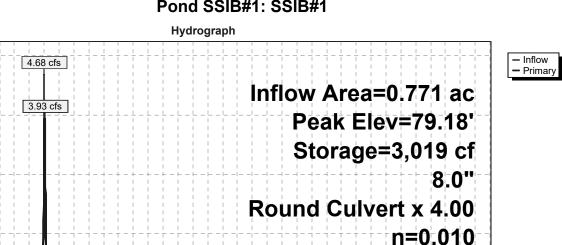
Plug-Flow detention time= 110.7 min calculated for 0.284 af (85% of inflow) Center-of-Mass det. time= 47.9 min (830.7 - 782.7)

Volume	Invert	Avail.Storage	Storage Description
#1A	76.50'	1,289 cf	28.00'W x 59.00'L x 3.21'H Field A
			5,300 cf Overall - 2,077 cf Embedded = 3,224 cf x 40.0% Voids
#2A	77.00'	2,077 cf	Cultec R-280HD x 48 Inside #1
			Effective Size= 46.9"W x 26.0"H => 6.07 sf x 7.00'L = 42.5 cf
			Overall Size= 47.0"W x 26.5"H x 8.00'L with 1.00' Overlap
			Row Length Adjustment= +1.00' x 6.07 sf x 6 rows
		3,366 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	78.30'	8.0" Round Culvert X 4.00 L= 11.0' Ke= 0.900 Inlet / Outlet Invert= 78.30' / 78.19' S= 0.0100 '/' Cc= 0.900 n= 0.010, Flow Area= 0.35 sf

Primary OutFlow Max=3.93 cfs @ 12.05 hrs HW=79.18' TW=0.00' (Dynamic Tailwater) -1=Culvert (Inlet Controls 3.93 cfs @ 2.82 fps)


KING RAIL DEVELOPED STORMWATER CALCULATIONS Type III 24-hr 100 year Rainfall=6.50"

L=11.0'

S=0.0100 '/'

Page 56

Prepared by Linden Engineering Partners, LLC HydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC

Pond SSIB#1: SSIB#1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 Time (hours)

KRAIL-DEV2

5

4

3

2

1

0

Flow (cfs)

KING RAIL DEVELOPED STORMWATER CALCULATIONS

Type III 24-hr 100 year Rainfall=6.50"

 Prepared by Linden Engineering Partners, LLC

 HydroCAD® 10.20-3c
 s/n 07179

 © 2023 HydroCAD Software Solutions LLC
 Page 57

Stage-Discharge for Pond SSIB#1: SSIB#1

Elevation (feet)	Primary (cfs)	Elevation (feet)	Primary (cfs)	Elevation (feet)	Primary (cfs)	Elevation (feet)	Primary (cfs)
76.50	0.00	77.54	0.00	78.58	0.79	79.62	5.27
76.50	0.00	77.54	0.00	78.60	0.79	79.62 79.64	5.27 5.33
76.52	0.00	77.58	0.00	78.62	1.01	79.66	5.38
76.54	0.00	77.60	0.00	78.64	1.12	79.68	5.43
76.58	0.00	77.62	0.00	78.66	1.12	79.00	5.43 5.48
76.60	0.00	77.64	0.00	78.68	1.24	79.70	5.40
76.62	0.00	77.66	0.00	78.70	1.48		
76.64	0.00	77.68	0.00	78.70	1.60		
76.66	0.00	77.70	0.00	78.72	1.00		
76.68	0.00	77.72	0.00	78.76	1.85		
76.70	0.00	77.74	0.00	78.78	1.98		
76.72	0.00	77.76	0.00	78.80	2.11		
76.72	0.00	77.78	0.00	78.82	2.24		
76.76	0.00	77.80	0.00	78.84	2.38		
76.78	0.00	77.82	0.00	78.86	2.51		
76.80	0.00	77.84	0.00	78.88	2.64		
76.82	0.00	77.86	0.00	78.90	2.76		
76.84	0.00	77.88	0.00	78.92	2.86		
76.86	0.00	77.90	0.00	78.94	2.96		
76.88	0.00	77.92	0.00	78.96	3.04		
76.90	0.00	77.94	0.00	78.98	3.13		
76.92	0.00	77.96	0.00	79.00	3.21		
76.94	0.00	77.98	0.00	79.02	3.30		
76.96	0.00	78.00	0.00	79.04	3.38		
76.98	0.00	78.02	0.00	79.06	3.47		
77.00	0.00	78.04	0.00	79.08	3.55		
77.02	0.00	78.06	0.00	79.10	3.63		
77.04	0.00	78.08	0.00	79.12	3.70		
77.06	0.00	78.10	0.00	79.14	3.78		
77.08	0.00	78.12	0.00	79.16	3.85		
77.10	0.00	78.14	0.00	79.18	3.92		
77.12	0.00	78.16	0.00	79.20	4.00		
77.14	0.00	78.18	0.00	79.22	4.07		
77.16	0.00	78.20	0.00	79.24	4.13		
77.18	0.00	78.22	0.00	79.26	4.20		
77.20	0.00	78.24	0.00	79.28	4.27		
77.22	0.00	78.26	0.00	79.30	4.33		
77.24	0.00	78.28	0.00	79.32	4.40		
77.26	0.00	78.30	0.00	79.34	4.46		
77.28	0.00	78.32	0.00	79.36	4.52		
77.30 77.32	0.00 0.00	78.34 78.36	0.02 0.04	79.38 79.40	4.59 4.65		
77.34	0.00	78.38	0.04	79.40	4.05		
77.36	0.00	78.30	0.07	79.42	4.77		
77.38	0.00	78.40	0.11	79.44	4.83		
77.40	0.00	78.44	0.10	79.48	4.88		
77.42	0.00	78.46	0.21	79.50	4.94		
77.44	0.00	78.48	0.20	79.52	5.00		
77.46	0.00	78.50	0.42	79.54	5.05		
77.48	0.00	78.52	0.51	79.56	5.11		
77.50	0.00	78.54	0.60	79.58	5.16		
77.52	0.00	78.56	0.69	79.60	5.22		
		l			I		

KING RAIL DEVELOPED STORMWATER CALCULATIONS

Type III 24-hr 100 year Rainfall=6.50"

Prepared by Linden Engineering Partners, LLC HydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond SSIB#1: SSIB#1

Flovetion	Storago	Elevation	Storago
Elevation (feet)	Storage (cubic-feet)	(feet)	Storage (cubic-feet)
76.50	0	79.10	2,962
76.55	33	79.15	2,997
76.60	66	79.20	3,030
76.65	99	79.25	3,063
76.70	132	79.30	3,096
76.75	165	79.35	3,129
76.80	198	79.40	3,162
76.85 76.90	231 264	79.45 79.50	3,195
76.95	204 297	79.55	3,228 3,261
77.00	330	79.60	3,294
77.05	403	79.65	3,327
77.10	476	79.70	3,360
77.15	548		
77.20	619		
77.25	690		
77.30	761		
77.35 77.40	832 903		
77.40	973		
77.50	1,043		
77.55	1,113		
77.60	1,182		
77.65	1,251		
77.70	1,320		
77.75	1,388		
77.80 77.85	1,455 1,523		
77.90	1,590		
77.95	1,656		
78.00	1,723		
78.05	1,789		
78.10	1,854		
78.15	1,919		
78.20	1,984		
78.25 78.30	2,047 2,110		
78.35	2,173		
78.40	2,234		
78.45	2,295		
78.50	2,355		
78.55	2,414		
78.60	2,472		
78.65	2,529		
78.70 78.75	2,585 2,639		
78.80	2,692		
78.85	2,744		
78.90	2,793		
78.95	2,840		
79.00	2,883		
79.05	2,924		

KRAIL-DEV2 Prepared by Linden Engineering Partners, LLC HydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC

```
Page 59
```

Event#	Event Name	Storm Type	Curve	Mode	Duration (hours)	B/B	Depth (inches)	AMC
1	2 year	Type III 24-hr		Default	24.00	1	3.10	2
2	10 year	Type III 24-hr		Default	24.00	1	4.55	2
3	25 year	Type III 24-hr		Default	24.00	1	5.45	2
4	100 year	Type III 24-hr		Default	24.00	1	6.50	2

Rainfall Events Listing (selected events)

Summary for Subcatchment 3276S: AREA DIRECTLY TRIBUTARY TO RM

Runoff = 0.09 cfs @ 12.16 hrs, Volume= 0.009 af, Depth= 0.68" Routed to Reach 3269R : DIRECT FLOW TO RM

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2 year Rainfall=3.10"

A	rea (sf)	CN I	Description			
	5,649	61 >	>75% Gras	s cover, Go	od, HSG B	
	600	98 I	Paved road	s w/curbs &	sewers, HSG B	
	175	98 \	Nater Surfa	ace, HSG B		
	500	98 I	Paved park	ing, HSG B		
	6,924	68 \	Neighted A	verage		
	5,649	8	31.59% Per	vious Area		
	1,275		18.41% Imp	pervious Ar	a	
Тс	Length	Slope		Capacity	Description	
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
9.9	45	0.0100	0.08		Sheet Flow,	
					Grass: Dense n= 0.240 P2= 3	.20"

Summary for Subcatchment D-1: D-1 TO CASIN

Runoff = 0.03 cfs @ 12.13 hrs, Volume= 0.004 af, Depth= 0.40" Routed to Reach 3275R : TOTAL FLOW FROM WORK AREA

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2 year Rainfall=3.10"

_	A	rea (sf)	CN I	Description			_
		5,387	61 :	>75% Gras	s cover, Go	ood, HSG B	
		5,387		100.00% Pe	ervious Are	a	
	Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description	
	5.3	50	0.0600	0.16		Sheet Flow, 50	
	1.0	87	0.0600	1.47		Grass: Dense n= 0.240 P2= 3.20" Shallow Concentrated Flow, Kv= 6.0 fps	
_	0.0	8	0.5000	4.24		Shallow Concentrated Flow, Kv= 6.0 fps	
	6.3	145	Total				

Summary for Subcatchment D-2A: D-2A

Runoff = 0.16 cfs @ 12.51 hrs, Volume= 0.031 af, Depth= 0.34" Routed to Pond IB#1 : NEW IB#1

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2 year Rainfall=3.10"

A	rea (sf)	CN D	escription							
	4,200	56 B	56 Brush, Fair, HSG B							
	30,622	58 N	leadow, no	on-grazed,	HSG B					
	12,593	61 >	75% Gras	s cover, Go	ood, HSG B					
	47,415	59 V	Veighted A	verage						
	47,415	1	00.00% Pe	ervious Are	a					
Tc	Length	Slope	Velocity	Capacity	Description					
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)						
7.0	50	0.0300	0.12		Sheet Flow,					
					Grass: Dense n= 0.240 P2= 3.20"					
2.4	150	0.0300	1.04		Shallow Concentrated Flow,					
					Kv= 6.0 fps					
1.4	50	0.0100	0.60		Shallow Concentrated Flow,					
					Kv= 6.0 fps					
10.4	264	0.0050	0.42		Shallow Concentrated Flow,					
					Kv= 6.0 fps					
2.3	147	0.0050	1.06		Shallow Concentrated Flow,					
					Grassed Waterway Kv= 15.0 fps					
23.5	661	Total								

Summary for Subcatchment D-2B: D-2B

Runoff = 0.75 cfs @ 12.08 hrs, Volume= 0.057 af, Depth= 2.65" Routed to Pond IB#1 : NEW IB#1

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2 year Rainfall=3.10"

A	rea (sf)	CN	Description		
	8,200	96	Gravel surfa	ace, HSG B	3
	3,025	96	Gravel surfa	ace, HSG B	3
	11,225	96	Weighted A	verage	
	11,225		100.00% Pe	ervious Are	a
Tc (min)	Length (feet)	Slope (ft/ft	,	Capacity (cfs)	Description
6.0					Direct Entry,

Summary for Subcatchment D-3A: Clubhouse Roof

Runoff	=	0.16 cfs @	12.08 hrs,	Volume=	0.013 af,	Depth= 2.87"
Routed	to Pond	IB#2 : IB#2				

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2 year Rainfall=3.10"

Area (sf)	CN	Description		
2,360	98	Roofs, HSC	βB	
2,360		100.00% In	npervious A	Area
Tc Lengt (min) (feel		,	Capacity (cfs)	Description
6.0				Direct Entry,

Summary for Subcatchment D-3B: Direct to IB#2

Runoff	=	0.01 cfs @	12.11 hrs,	Volume=	
Routed	l to Pond	I IB#2 : IB#2			

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2 year Rainfall=3.10"

Α	rea (sf)	CN I	Description							
	180	79 ·	79 <50% Grass cover, Poor, HSG B							
	630	61 :	>75% Gras	s cover, Go	ood, HSG B					
	810	65 Weighted Average								
	810		100.00% Pervious Area							
Тс	Length	Slope	Velocity	Capacity	Description					
(min)	(feet)	(ft/ft)		(cfs)						
6.0	(1001)	(14,14)	(14,000)	(0.0)	Direct Entry,					

Summary for Subcatchment D-4A: D-2

Runoff = 0.43 cfs @ 12.10 hrs, Volume= Routed to Pond 6R : DCB#1- DMH#1

0.031 af, Depth= 1.75"

0.001 af, Depth= 0.55"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2 year Rainfall=3.10"

Area (sf)	CN	Description
6,485	98	Paved parking, HSG B
2,930	61	>75% Grass cover, Good, HSG B
9,415	86	Weighted Average
2,930		31.12% Pervious Area
6,485		68.88% Impervious Area

KING RAIL DEVELOPED STORMWATER CALCULATIONS

Type III 24-hr 2 year Rainfall=3.10"

Prepared by Linden Engineering Partners, LLC HydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC

Page 63

_	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
	5.3	50	0.0600	0.16		Sheet Flow,	
						Grass: Dense n= 0.240 P2= 3.20"	
	1.0	90	0.0600	1.47		Shallow Concentrated Flow,	
						Kv= 6.0 fps	
	0.5	154	0.0600	4.97		Shallow Concentrated Flow,	
_						Paved Kv= 20.3 fps	
	6.8	294	Total				

Summary for Subcatchment D-4B: (new Subcat)

Runoff = 0.71 cfs @ 12.00 hrs, Volume= 0.041 af, Depth= 1.99" Routed to Pond 11R : DCB#2 - DMH#1

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2 year Rainfall=3.10"

Area (sf)	CN	Description	
8,365	98	Paved parking, HSG B	
2,500	61	>75% Grass cover, Good, HSG B	
10,865	89	Weighted Average	
2,500		23.01% Pervious Area	
8,365		76.99% Impervious Area	

Summary for Subcatchment D-4C: D-4C

Runoff = 0.90 cfs @ 12.00 hrs, Volume= 0.053 af, Depth= 2.08" Routed to Pond 14R : DCB#3-DMH#2

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2 year Rainfall=3.10"

Area (sf)	CN	Description	
10,300	98	Paved roads w/curbs & sewers, HSG B	
3,000	61	>75% Grass cover, Good, HSG B	
13,300	90	Weighted Average	
3,000		22.56% Pervious Area	
10,300		77.44% Impervious Area	

Summary for Subcatchment D-5: ON-SITE TO YARD CBS

Runoff = 0.02 cfs @ 12.30 hrs, Volume= 0.004 af, Depth= 0.40" Routed to Reach 3274R : YARD CBS TO PICKUP FLOW FROM LIFE

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2 year Rainfall=3.10"

KRAIL-DEV2

KING RAIL DEVELOPED STORMWATER CALCULATIONS

Type III 24-hr 2 year Rainfall=3.10"

Prepared by Linden Engineering Partners, LLC HydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC

Page 64

Α	rea (sf)	CN I	Description					
	4,875	61 :	61 >75% Grass cover, Good, HSG B					
	4,875	100.00% Pervious Area			а			
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
14.3	50	0.0050	0.06		Sheet Flow, Grass: Dense	n= 0.240	P2= 3.20"	

Summary for Subcatchment OS-2: OS-2

Runoff = 0.02 cfs @ 12.13 hrs, Volume= 0.002 af, Depth= 0.40" Routed to Reach 3274R : YARD CBS TO PICKUP FLOW FROM LIFE

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2 year Rainfall=3.10"

	Area (sf)	CN	Description						
	2,641	61	61 >75% Grass cover, Good, HSG B						
	2,641	100.00% Pervious Area			а				
To (min)	5	Slope (ft/ft)	,	Capacity (cfs)	Description				
4.8	3 40	0.0500	0.14		Sheet Flow, Grass: Dense	n= 0 240	P2= 3 20"		
4.8	3 40	Total,	Increased t	o minimum	Tc = 6.0 min		0.20		

Summary for Subcatchment OS-3: OS-3

Runoff = 0.07 cfs @ 12.12 hrs, Volume= 0.008 af, Depth= 0.48" Routed to Reach 3274R : YARD CBS TO PICKUP FLOW FROM LIFE

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2 year Rainfall=3.10"

A	rea (sf)	CN E	Description					
	500	98 F	Paved park	ing, HSG B				
	7,926	61 >	75% Gras	s cover, Go	od, HSG B			
	8,426	63 V	Veighted A	verage				
	7,926	ç	94.07% Per	vious Area				
	500	5	5.93% Impe	ervious Area	а			
Тс	Length	Slope	Velocity	Capacity	Description			
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)				
4.1	50	0.1100	0.20		Sheet Flow,			
					Grass: Dense	n= 0.240	P2= 3.20"	
4.1	50	Total, I	ncreased t	o minimum	Tc = 6.0 min			

KRAIL-DEV2

Summary for Subcatchment OS-4: OS-4

Runoff = 0.08 cfs @ 12.11 hrs, Volume= 0.008 af, Depth= 0.51" Routed to Reach 3274R : YARD CBS TO PICKUP FLOW FROM LIFE

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2 year Rainfall=3.10"

A	rea (sf)	CN E	CN Description					
	700	98 F	Paved park	ing, HSG E	}			
	7,685	61 >	75% Gras	s cover, Go	ood, HSG B			
	8,385	64 V	Veighted A	verage				
	7,685	g	1.65% Per	vious Area	l			
	700	8	8.35% Impe	ervious Are	а			
_								
Tc	Length	Slope	Velocity	Capacity	Description			
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)				
5.6	44	0.0400	0.13		Sheet Flow,			
					Grass: Dense	n= 0.240	P2= 3.20"	
5.6	44	Total, I	ncreased t	o minimum	n Tc = 6.0 min			

Summary for Subcatchment OS-5: OS-5

Runoff = 0.03 cfs @ 12.13 hrs, Volume= 0.004 af, Depth= 0.40" Routed to Reach 3274R : YARD CBS TO PICKUP FLOW FROM LIFE

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2 year Rainfall=3.10"

_	A	rea (sf)	CN I	Description						
		4,795	61 :	61 >75% Grass cover, Good, HSG B						
		4,795	100.00% Pervious Area			а				
_	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
	5.8	46	0.0400	0.13		Sheet Flow, Grass: Dense	n= 0 240	P2= 3 20"		
_	5.8	46	Total,	Increased t	o minimum	Tc = 6.0 min	11 0.210	12 0.20		

Summary for Reach 16R: FLOW THRIOUGH NEW 18" PIPE

Inflow Area = 1.439 ac, 42.02% Impervious, Inflow Depth = 0.86" for 2 year event Inflow = 0.91 cfs @ 12.24 hrs, Volume= 0.103 af Outflow = 0.91 cfs @ 12.24 hrs, Volume= 0.103 af, Atten= 0%, Lag= 0.0 min Routed to Reach 3269R : DIRECT FLOW TO RM Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3

Summary for Reach 3269R: DIRECT FLOW TO RM

Inflow Area = 3.017 ac, 22.81% Impervious, Inflow Depth = 0.79" for 2 year event Inflow = 1.54 cfs @ 12.22 hrs, Volume= 0.200 af Outflow = 1.54 cfs @ 12.22 hrs, Volume= 0.200 af, Atten= 0%, Lag= 0.0 min Routed to Reach 3275R : TOTAL FLOW FROM WORK AREA

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3

Summary for Reach 3274R: YARD CBS TO PICKUP FLOW FROM LIFE

Inflow Area = 0.669 ac, 4.12% Impervious, Inflow Depth = 0.46" for 2 year event Inflow = 0.21 cfs @ 12.12 hrs, Volume= 0.025 af Outflow = 0.21 cfs @ 12.12 hrs, Volume= 0.025 af, Atten= 0%, Lag= 0.0 min Routed to Reach 16R : FLOW THRIOUGH NEW 18" PIPE

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3

Summary for Reach 3275R: TOTAL FLOW FROM WORK AREA

Inflow Area =	3.141 ac, 21.92% Impervious, Inflow	v Depth = 0.78" for 2 year event
Inflow =	1.56 cfs @ 12.22 hrs, Volume=	0.204 af
Outflow =	1.56 cfs @ 12.22 hrs, Volume=	0.204 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3

Summary for Pond 1R: CASCADE-SSIB#1

 Inflow Area =
 0.771 ac, 74.90% Impervious, Inflow Depth =
 1.96" for 2 year event

 Inflow =
 1.85 cfs @
 12.00 hrs, Volume=
 0.126 af

 Outflow =
 1.85 cfs @
 12.00 hrs, Volume=
 0.126 af, Atten= 0%, Lag= 0.0 min

 Primary =
 1.85 cfs @
 12.00 hrs, Volume=
 0.126 af

 Routed to Pond SSIB#1 : SSIB#1
 0.126 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 78.58' @ 12.24 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	77.23'	18.0" Round Culvert L= 8.0' Square-edged headwall, Ke= 0.500
			Inlet / Outlet Invert= 77.23' / 77.20' S= 0.0038 '/' Cc= 0.900 n= 0.010, Flow Area= 1.77 sf

Primary OutFlow Max=1.84 cfs @ 12.00 hrs HW=78.13' TW=77.99' (Dynamic Tailwater) -1=Culvert (Outlet Controls 1.84 cfs @ 2.39 fps)

KING RAIL DEVELOPED STORMWATER CALCULATIONS Type III 24-hr 2 year Rainfall=3.10" **KRAIL-DEV2** Prepared by Linden Engineering Partners, LLC HydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC

Page 67

Summary for Pond 6R: DCB#1- DMH#1

Inflow Area = 0.216 ac, 68.88% Impervious, Inflow Depth = 1.75" for 2 year event Inflow 0.43 cfs @ 12.10 hrs, Volume= 0.031 af = 0.43 cfs @ 12.10 hrs, Volume= 0.031 af, Atten= 0%, Lag= 0.0 min Outflow = Primary = 0.43 cfs @ 12.10 hrs, Volume= 0.031 af Routed to Pond 9R : DMH#1-DMH#2

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 81.33' @ 12.10 hrs

Device	Routing	Invert	Outlet Devices
<u></u> #1	Primary		12.0" Round Culvert L= 140.0' Square-edged headwall, Ke= 0.500 Inlet / Outlet Invert= 81.00' / 78.20' S= 0.0200 '/' Cc= 0.900 n= 0.010, Flow Area= 0.79 sf

Primary OutFlow Max=0.43 cfs @ 12.10 hrs HW=81.33' TW=78.78' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 0.43 cfs @ 1.94 fps)

Summary for Pond 9R: DMH#1-DMH#2

Inflow Area =	0.466 ac, 73.22% Impervious,	Inflow Depth = 1.88" for 2 year event
Inflow =	0.95 cfs @ 12.00 hrs, Volume	= 0.073 af
Outflow =	0.95 cfs @ 12.00 hrs, Volume	= 0.073 af, Atten= 0%, Lag= 0.0 min
Primary =	0.95 cfs @ 12.00 hrs, Volume	= 0.073 af
Routed to Por	nd 12R : DMH#2-CASCADE	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 78.79' @ 12.01 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	78.20'	12.0" Round Culvert L= 135.0' Square-edged headwall, Ke= 0.500 Inlet / Outlet Invert= 78.20' / 77.55' S= 0.0048 '/' Cc= 0.900 n= 0.010, Flow Area= 0.79 sf

Primary OutFlow Max=0.92 cfs @ 12.00 hrs HW=78.79' TW=78.29' (Dynamic Tailwater) -1=Culvert (Outlet Controls 0.92 cfs @ 2.75 fps)

Summary for Pond 11R: DCB#2 - DMH#1

Inflow Area = 0.249 ac, 76.99% Impervious, Inflow Depth = 1.99" for 2 year event Inflow = 0.71 cfs @ 12.00 hrs, Volume= 0.041 af Outflow = 0.71 cfs @ 12.00 hrs, Volume= 0.041 af, Atten= 0%, Lag= 0.0 min 0.71 cfs @ 12.00 hrs, Volume= = 0.041 af Primarv Routed to Pond 9R : DMH#1-DMH#2

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3

KING RAIL DEVELOPED STORMWATER CALCULATIONS

Type III 24-hr 2 year Rainfall=3.10"

KRAIL-DEV2TypePrepared by Linden Engineering Partners, LLCHydroCAD® 10.20-3cs/n 07179© 2023 HydroCAD Software Solutions LLC

Page 68

Peak Elev= 78.88' @ 12.00 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	78.25'	12.0" Round Culvert L= 3.0' Square-edged headwall, Ke= 0.500 Inlet / Outlet Invert= 78.25' / 78.20' S= 0.0167 '/' Cc= 0.900 n= 0.010, Flow Area= 0.79 sf

Primary OutFlow Max=0.70 cfs @ 12.00 hrs HW=78.88' TW=78.79' (Dynamic Tailwater) -1=Culvert (Outlet Controls 0.70 cfs @ 1.92 fps)

Summary for Pond 12R: DMH#2-CASCADE

 Inflow Area =
 0.771 ac, 74.90% Impervious, Inflow Depth =
 1.96" for 2 year event

 Inflow =
 1.85 cfs @
 12.00 hrs, Volume=
 0.126 af

 Outflow =
 1.85 cfs @
 12.00 hrs, Volume=
 0.126 af, Atten= 0%, Lag= 0.0 min

 Primary =
 1.85 cfs @
 12.00 hrs, Volume=
 0.126 af

 Routed to Pond 1R : CASCADE-SSIB#1
 0.126 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 78.59' @ 12.23 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	77.33'	15.0" Round Culvert L= 3.0' Square-edged headwall, Ke= 0.500 Inlet / Outlet Invert= 77.33' / 77.30' S= 0.0100 '/' Cc= 0.900 n= 0.010, Flow Area= 1.23 sf

Primary OutFlow Max=1.84 cfs @ 12.00 hrs HW=78.28' TW=78.13' (Dynamic Tailwater) -1=Culvert (Outlet Controls 1.84 cfs @ 2.54 fps)

Summary for Pond 14R: DCB#3-DMH#2

 Inflow Area =
 0.305 ac, 77.44% Impervious, Inflow Depth = 2.08" for 2 year event

 Inflow =
 0.90 cfs @ 12.00 hrs, Volume=
 0.053 af

 Outflow =
 0.90 cfs @ 12.00 hrs, Volume=
 0.053 af, Atten= 0%, Lag= 0.0 min

 Primary =
 0.90 cfs @ 12.00 hrs, Volume=
 0.053 af

 Routed to Pond 12R : DMH#2-CASCADE
 0.053 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 78.60' @ 12.23 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	77.58'	12.0" Round Culvert L= 3.0' Square-edged headwall, Ke= 0.500 Inlet / Outlet Invert= 77.58' / 77.55' S= 0.0100 '/' Cc= 0.900 n= 0.010, Flow Area= 0.79 sf

Primary OutFlow Max=0.77 cfs @ 12.00 hrs HW=78.34' TW=78.28' (Dynamic Tailwater) -1=Culvert (Outlet Controls 0.77 cfs @ 1.65 fps)

KING RAIL DEVELOPED STORMWATER CALCULATIONS **KRAIL-DEV2** Type III 24-hr 2 year Rainfall=3.10" Prepared by Linden Engineering Partners, LLC HydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC

Page 69

Summary for Pond IB#1: NEW IB#1

Inflow Area =		1.346 ac,	0.00% Impervious, Inflow De	epth = 0.78" for 2 year event	
Inflow	=	0.75 cfs @	12.09 hrs, Volume=	0.088 af	
Outflow	=	0.47 cfs @	12.20 hrs, Volume=	0.074 af, Atten= 38%, Lag= 6.6 min	
Primary	=	0.47 cfs @	12.20 hrs, Volume=	0.074 af	
Routed to Reach 3269R : DIRECT FLOW TO RM					

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 78.31' @ 12.20 hrs Surf Area= 1,522 sf Storage= 1,004 cf

Plug-Flow detention time= 150.3 min calculated for 0.074 af (85% of inflow) Center-of-Mass det. time= 79.4 min (914.7 - 835.3)

Volume	Inv	ert Avail.Sto	orage Storag	ge Description	
#1	77.	50' 2,2	29 cf Custo	om Stage Data (P	rismatic)Listed below (Recalc)
Elevatio (fee 77.5 78.0 79.0	et) 50 00	Surf.Area (sq-ft) 976 1,304 2,013	Inc.Store (cubic-feet) 0 570 1,659	Cum.Store (cubic-feet) 0 570 2,229	
Device	Routing	Invert	Outlet Devi	ces	
#1	Primary	78.00'	8.0" Round Culvert X 2.00 L= 30.0' Ke= 0.900 Inlet / Outlet Invert= 78.00' / 77.50' S= 0.0167 '/' Cc= 0.900 n= 0.010, Flow Area= 0.35 sf		7.50' S= 0.0167 '/' Cc= 0.900

Primary OutFlow Max=0.47 cfs @ 12.20 hrs HW=78.31' TW=0.00' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 0.47 cfs @ 1.49 fps)

Summary for Pond IB#2: IB#2

Inflow Area =	0.073 ac, 74.45% Impervious, Inflow De	epth = 2.28" for 2 year event				
Inflow =	0.17 cfs @ 12.09 hrs, Volume=	0.014 af				
Outflow =	0.17 cfs @ 12.09 hrs, Volume=	0.014 af, Atten= 0%, Lag= 0.0 min				
Primary =	0.17 cfs @ 12.09 hrs, Volume=	0.014 af				
Routed to Reach 3269R : DIRECT FLOW TO RM						

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 77.00' @ 0.00 hrs Surf.Area= 180 sf Storage= 0 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.0 min (765.8 - 765.8)

Volume	Invert	Avail.Storage	Storage Description
#1	77.00'	630 cf	Custom Stage Data (Prismatic)Listed below (Recalc)

KING RAIL DEVELOPED STORMWATER CALCULATIONS Type III 24-hr 2 year Rainfall=3.10"

KRAIL-DEV2

Prepared by Linden Engineering Partners, LLC HydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC

Page 70

Elevation (feet)		Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)		
77.00		180	0	0		
78.0	00	310	245	245		
78.5	50	378	172	417		
79.00		475	213 630			
Device	Routing	Invert	Outlet Devices			
#1	Primary	50.00'	30.0' long x 2.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 Coef. (English) 2.54 2.61 2.61 2.60 2.66 2.70 2.77 2.89 2.88 2.85 3.07 3.20 3.32			

Primary OutFlow Max=0.00 cfs @ 12.09 hrs HW=77.00' TW=0.00' (Dynamic Tailwater) **1=Broad-Crested Rectangular Weir** (Passes 0.00 cfs of 13,973.49 cfs potential flow)

Summary for Pond SSIB#1: SSIB#1

Inflow Are	a =	0.771 ac, 74.90% Impervious, Inflow Depth = 1.96" for 2 year event	
Inflow	=	1.85 cfs @ 12.00 hrs, Volume= 0.126 af	
Outflow	=	0.73 cfs @ 12.25 hrs, Volume= 0.077 af, Atten= 60%, Lag= 14.	7 min
Primary	=	0.73 cfs @ 12.25 hrs, Volume= 0.077 af	
Routed	l to Rea	16R : FLOW THRIOUGH NEW 18" PIPE	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 78.57' @ 12.25 hrs Surf.Area= 1,652 sf Storage= 2,435 cf

Plug-Flow detention time= 203.0 min calculated for 0.077 af (61% of inflow) Center-of-Mass det. time= 98.9 min (908.4 - 809.5)

Volume	Invert	Avail.Storage	Storage Description
#1A	76.50'	1,289 cf	28.00'W x 59.00'L x 3.21'H Field A
			5,300 cf Overall - 2,077 cf Embedded = 3,224 cf x 40.0% Voids
#2A	77.00'	2,077 cf	Cultec R-280HD x 48 Inside #1
			Effective Size= 46.9"W x 26.0"H => 6.07 sf x 7.00'L = 42.5 cf
			Overall Size= 47.0"W x 26.5"H x 8.00'L with 1.00' Overlap
			Row Length Adjustment= +1.00' x 6.07 sf x 6 rows
		3,366 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	78.30'	8.0" Round Culvert X 4.00 L= 11.0' Ke= 0.900 Inlet / Outlet Invert= 78.30' / 78.19' S= 0.0100 '/' Cc= 0.900 n= 0.010, Flow Area= 0.35 sf

Primary OutFlow Max=0.73 cfs @ 12.25 hrs HW=78.57' TW=0.00' (Dynamic Tailwater) -1=Culvert (Inlet Controls 0.73 cfs @ 1.39 fps)

Summary for Subcatchment 3276S: AREA DIRECTLY TRIBUTARY TO RM

Runoff = 0.24 cfs @ 12.15 hrs, Volume= 0.021 af, Depth= 1.57" Routed to Reach 3269R : DIRECT FLOW TO RM

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 year Rainfall=4.55"

Α	rea (sf)	CN I	Description			
	5,649	61 >	>75% Gras	s cover, Go	od, HSG B	
	600	98 I	Paved road	s w/curbs &	sewers, HSG B	
	175	98 \	Nater Surfa	ace, HSG B		
	500	98 I	Paved park	ing, HSG B		
	6,924	68 \	Neighted A	verage		
	5,649	8	31.59% Per	vious Area		
	1,275		18.41% Imp	pervious Ar	a	
Тс	Length	Slope		Capacity	Description	
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
9.9	45	0.0100	0.08		Sheet Flow,	
					Grass: Dense n= 0.240 P2= 3	.20"

Summary for Subcatchment D-1: D-1 TO CASIN

Runoff = 0.14 cfs @ 12.11 hrs, Volume= 0.011 af, Depth= 1.11" Routed to Reach 3275R : TOTAL FLOW FROM WORK AREA

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 year Rainfall=4.55"

_	A	rea (sf)	CN I	Description							
	5,387 61 >75% Grass cover, Good, HSG B										
		5,387	100.00% Pervious Area								
_	Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description					
	5.3	50	0.0600	0.16		Sheet Flow, 50					
	1.0	87	0.0600	1.47		Grass: Dense n= 0.240 P2= 3.20" Shallow Concentrated Flow, Kv= 6.0 fps					
	0.0	8	0.5000	4.24		Shallow Concentrated Flow, Kv= 6.0 fps					
_	6.3	145	Total								

Type III 24-hr 10 year Rainfall=4.55"

Prepared by Linden Engineering Partners, LLC HydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC

Page 72

Summary for Subcatchment D-2A: D-2A

Runoff = 0.67 cfs @ 12.40 hrs, Volume= 0.090 af, Depth= 0.99" Routed to Pond IB#1 : NEW IB#1

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 year Rainfall=4.55"

A	rea (sf)	CN D	escription								
	4,200	56 B	56 Brush, Fair, HSG B								
	30,622		8 Meadow, non-grazed, HSG B								
	12,593	61 >	75% Gras	s cover, Go	ood, HSG B						
	47,415	59 V	Veighted A	verage							
	47,415	1	00.00% Pe	ervious Are	a						
_				- ··							
Tc	Length	Slope	Velocity	Capacity	Description						
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)							
7.0	50	0.0300	0.12		Sheet Flow,						
					Grass: Dense n= 0.240 P2= 3.20"						
2.4	150	0.0300	1.04		Shallow Concentrated Flow,						
					Kv= 6.0 fps						
1.4	50	0.0100	0.60		Shallow Concentrated Flow,						
					Kv= 6.0 fps						
10.4	264	0.0050	0.42		Shallow Concentrated Flow,						
					Kv= 6.0 fps						
2.3	147	0.0050	1.06		Shallow Concentrated Flow,						
					Grassed Waterway Kv= 15.0 fps						
23.5	661	Total									

Summary for Subcatchment D-2B: D-2B

Runoff = 1.12 cfs @ 12.08 hrs, Volume= 0.088 af, Depth= 4.09" Routed to Pond IB#1 : NEW IB#1

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 year Rainfall=4.55"

A	rea (sf)	CN	Description						
	8,200	96	Gravel surfa	ace, HSG E	3				
	3,025	96	Gravel surfa	ravel surface, HSG B					
	11,225	96	Weighted A	verage					
	11,225		100.00% Pe	ervious Are	a				
Tc (min)					Description				
6.0					Direct Entry,				

KRAIL-DEV2

Summary for Subcatchment D-3A: Clubhouse Roof

Runoff	=	0.24 cfs @	12.08 hrs,	Volume=	0.01	19 af, Depth=	4.31"
Routed	to Pond	I IB#2 : IB#2					

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 year Rainfall=4.55"

Area	(sf) CN	Description						
2,3	860 98	Roofs, HSC	βB					
2,3	860	100.00% Impervious Area						
	ngth Slo eet) (ft	pe Velocity /ft) (ft/sec)	Capacity (cfs)					
6.0				Direct Entry,				

Summary for Subcatchment D-3B: Direct to IB#2

Runoff	=	0.03 cfs @	12.10 hrs,	Volume=	0.002 af,	Depth= 1.36"
Routed	to Pond	IB#2 : IB#2				

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 year Rainfall=4.55"

Α	rea (sf)	CN I	Description							
	180	79 ·	<50% Grass cover, Poor, HSG B							
	630	61 :	>75% Gras	s cover, Go	ood, HSG B					
	810	65	Neighted A	verage						
	810		100.00% Pe	ervious Are	ea					
Тс	Length	Slope	,	Capacity	Description					
(min)	(feet)	(ft/ft)	(ft) (ft/sec) (cfs)							
6.0					Direct Entry,					

Summary for Subcatchment D-4A: D-2

Runoff = 0.74 cfs @ 12.10 hrs, Volume= Routed to Pond 6R : DCB#1- DMH#1

0.055 af, Depth= 3.05"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 year Rainfall=4.55"

Area (sf)	CN	Description
6,485	98	Paved parking, HSG B
2,930	61	>75% Grass cover, Good, HSG B
9,415	86	Weighted Average
2,930		31.12% Pervious Area
6,485		68.88% Impervious Area

KING RAIL DEVELOPED STORMWATER CALCULATIONS

Type III 24-hr 10 year Rainfall=4.55"

Prepared by Linden Engineering Partners, LLC HydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC

Page 74

	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
	5.3	50	0.0600	0.16		Sheet Flow,	
						Grass: Dense n= 0.240 P2= 3.20"	
	1.0	90	0.0600	1.47		Shallow Concentrated Flow,	
						Kv= 6.0 fps	
	0.5	154	0.0600	4.97		Shallow Concentrated Flow,	
_						Paved Kv= 20.3 fps	
	6.8	294	Total				

Summary for Subcatchment D-4B: (new Subcat)

Runoff = 1.17 cfs @ 12.00 hrs, Volume= 0.069 af, Depth= 3.34" Routed to Pond 11R : DCB#2 - DMH#1

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 year Rainfall=4.55"

Area (sf)	CN	Description
8,365	98	Paved parking, HSG B
2,500	61	>75% Grass cover, Good, HSG B
10,865	89	Weighted Average
2,500		23.01% Pervious Area
8,365		76.99% Impervious Area

Summary for Subcatchment D-4C: D-4C

Runoff = 1.46 cfs @ 12.00 hrs, Volume= 0.088 af, Depth= 3.44" Routed to Pond 14R : DCB#3-DMH#2

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 year Rainfall=4.55"

Area (sf)	CN	Description
10,300	98	Paved roads w/curbs & sewers, HSG B
3,000	61	>75% Grass cover, Good, HSG B
13,300	90	Weighted Average
3,000		22.56% Pervious Area
10,300		77.44% Impervious Area

Summary for Subcatchment D-5: ON-SITE TO YARD CBS

Runoff = 0.10 cfs @ 12.22 hrs, Volume= 0.010 af, Depth= 1.11" Routed to Reach 3274R : YARD CBS TO PICKUP FLOW FROM LIFE

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 year Rainfall=4.55"

KRAIL-DEV2

KING RAIL DEVELOPED STORMWATER CALCULATIONS

Type III 24-hr 10 year Rainfall=4.55"

Prepared by Linden Engineering Partners, LLC HydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC

Page 75

A	rea (sf)	CN [Description								
	4,875	61 >	61 >75% Grass cover, Good, HSG B								
	4,875	1	100.00% Pervious Area								
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description						
14.3	50	0.0050	0.06		Sheet Flow, Grass: Dense	n= 0.240	P2= 3.20"				

Summary for Subcatchment OS-2: OS-2

Runoff = 0.07 cfs @ 12.10 hrs, Volume= 0.006 af, Depth= 1.11" Routed to Reach 3274R : YARD CBS TO PICKUP FLOW FROM LIFE

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 year Rainfall=4.55"

A	rea (sf)	CN	Description					
	2,641	61	61 >75% Grass cover, Good, HSG B					
	2,641		100.00% Pe	ervious Are	а			
Tc (min)	Length (feet)			Capacity (cfs)	Description			
4.8	40	0.0500	0.14		Sheet Flow,		DO- 2 20"	
4.8	40	Total	Increased t	o minimum		n– 0.240	PZ- 3.20	
	Tc (min)	2,641 Tc Length (min) (feet) 4.8 40	2,641 61 2,641 Tc Length Slope (min) (feet) (ft/ft) 4.8 40 0.0500	2,641 61 >75% Grass 2,641 100.00% Pe Tc Length Slope Velocity (min) (feet) (ft/ft) (ft/sec) 4.8 40 0.0500 0.14	2,641 61 >75% Grass cover, Go 2,641 100.00% Pervious Are Tc Length Slope Velocity Capacity (min) (feet) (ft/ft) (ft/sec) (cfs) 4.8 40 0.0500 0.14	2,64161>75% Grass cover, Good, HSG B2,641100.00% Pervious AreaTcLengthSlopeVelocityCapacityDescription(min)(feet)(ft/ft)(ft/sec)(cfs)4.8400.05000.14Sheet Flow, Grass: Dense	2,64161>75% Grass cover, Good, HSG B2,641100.00% Pervious AreaTcLengthSlopeVelocityCapacityDescription(min)(feet)(ft/ft)(ft/sec)(cfs)4.8400.05000.14Sheet Flow, Grass: Densen= 0.240	2,641 61 >75% Grass cover, Good, HSG B 2,641 100.00% Pervious Area Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 4.8 40 0.0500 0.14 Sheet Flow, Grass: Dense n= 0.240 P2= 3.20"

Summary for Subcatchment OS-3: OS-3

Runoff = 0.25 cfs @ 12.10 hrs, Volume= 0.020 af, Depth= 1.23" Routed to Reach 3274R : YARD CBS TO PICKUP FLOW FROM LIFE

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 year Rainfall=4.55"

Α	rea (sf)	CN I	Description					
	500	98 I	Paved park	ing, HSG B	}			
	7,926	61 >	>75% Gras	s cover, Go	ood, HSG B			
	8,426	63 N	Neighted A	verage				
	7,926	ę	94.07% Per	vious Area				
	500	Ę	5.93% Impe	ervious Are	а			
Тс	Length	Slope		Capacity	Description			
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)				
4.1	50	0.1100	0.20		Sheet Flow,			
					Grass: Dense	n= 0.240	P2= 3.20"	
4.1	50	Total,	Increased t	o minimum	Tc = 6.0 min			

KRAIL-DEV2

Summary for Subcatchment OS-4: OS-4

Runoff = 0.27 cfs @ 12.10 hrs, Volume= 0.021 af, Depth= 1.30" Routed to Reach 3274R : YARD CBS TO PICKUP FLOW FROM LIFE

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 year Rainfall=4.55"

A	rea (sf)	CN E	Description					
	700	98 F	Paved park	ing, HSG E	}			
	7,685	61 >	75% Gras	s cover, Go	ood, HSG B			
	8,385	64 V	Veighted A	verage				
	7,685	g	1.65% Per	vious Area	l			
	700	8	8.35% Impe	ervious Are	а			
_								
Tc	Length	Slope	Velocity	Capacity	Description			
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)				
5.6	44	0.0400	0.13		Sheet Flow,			
					Grass: Dense	n= 0.240	P2= 3.20"	
5.6	44	Total, I	ncreased t	o minimum	n Tc = 6.0 min			

Summary for Subcatchment OS-5: OS-5

Runoff = 0.13 cfs @ 12.10 hrs, Volume= 0.010 af, Depth= 1.11" Routed to Reach 3274R : YARD CBS TO PICKUP FLOW FROM LIFE

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 year Rainfall=4.55"

_	A	rea (sf)	CN [Description					
		4,795	61 >	>75% Gras	s cover, Go	ood, HSG B			
		4,795		100.00% Pe	ervious Are	а			
_	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
	5.8	46	0.0400	0.13		Sheet Flow, Grass: Dense	n= 0.240	P2= 3.20"	
_	5.8	46	Total,	ncreased t	o minimum	Tc = 6.0 min		5.20	

Summary for Reach 16R: FLOW THRIOUGH NEW 18" PIPE

 Inflow Area =
 1.439 ac, 42.02% Impervious, Inflow Depth =
 1.92" for 10 year event

 Inflow =
 3.23 cfs @
 12.06 hrs, Volume=
 0.230 af

 Outflow =
 3.23 cfs @
 12.06 hrs, Volume=
 0.230 af, Atten= 0%, Lag= 0.0 min

 Routed to Reach 3269R : DIRECT FLOW TO RM
 0.230 af, Atten= 0%, Lag= 0.0 min
 0.230 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3

Summary for Reach 3269R: DIRECT FLOW TO RM

Inflow Area = 3.017 ac, 22.81% Impervious, Inflow Depth = 1.74" for 10 year event Inflow = 4.35 cfs @ 12.08 hrs, Volume= 0.437 af Outflow = 4.35 cfs @ 12.08 hrs, Volume= 0.437 af, Atten= 0%, Lag= 0.0 min Routed to Reach 3275R : TOTAL FLOW FROM WORK AREA

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3

Summary for Reach 3274R: YARD CBS TO PICKUP FLOW FROM LIFE

Inflow Area = 0.669 ac, 4.12% Impervious, Inflow Depth = 1.20" for 10 year event Inflow = 0.78 cfs @ 12.10 hrs, Volume= 0.067 af Outflow = 0.78 cfs @ 12.10 hrs, Volume= 0.067 af, Atten= 0%, Lag= 0.0 min Routed to Reach 16R : FLOW THRIOUGH NEW 18" PIPE

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3

Summary for Reach 3275R: TOTAL FLOW FROM WORK AREA

Inflow Area	a =	3.141 ac, 21.92% Impervious, Inflow Depth = 1.71" for 10 year	ar event
Inflow	=	4.48 cfs @ 12.08 hrs, Volume= 0.448 af	
Outflow	=	4.48 cfs @ 12.08 hrs, Volume= 0.448 af, Atten= 0%, La	ag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3

Summary for Pond 1R: CASCADE-SSIB#1

 Inflow Area =
 0.771 ac, 74.90% Impervious, Inflow Depth =
 3.00" for 10 year event

 Inflow =
 3.06 cfs @
 12.00 hrs, Volume=
 0.212 af

 Outflow =
 3.06 cfs @
 12.00 hrs, Volume=
 0.212 af, Atten= 0%, Lag= 0.0 min

 Primary =
 3.06 cfs @
 12.00 hrs, Volume=
 0.212 af, Atten= 0%, Lag= 0.0 min

 Primary =
 3.06 cfs @
 12.00 hrs, Volume=
 0.212 af

 Routed to Pond SSIB#1 : SSIB#1
 SSIB#1
 SSIB#1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 78.97' @ 12.03 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	77.23'	18.0" Round Culvert L= 8.0' Square-edged headwall, Ke= 0.500 Inlet / Outlet Invert= 77.23' / 77.20' S= 0.0038 '/' Cc= 0.900 n= 0.010, Flow Area= 1.77 sf

Primary OutFlow Max=3.04 cfs @ 12.00 hrs HW=78.94' TW=78.81' (Dynamic Tailwater) -1=Culvert (Inlet Controls 3.04 cfs @ 1.72 fps) KING RAIL DEVELOPED STORMWATER CALCULATIONS **KRAIL-DEV2**Type III 24-hr 10 year Rainfall=4.55"
Prepared by Linden Engineering Partners, LLC
HydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC
Page 78

Summary for Pond 6R: DCB#1- DMH#1

 Inflow Area =
 0.216 ac, 68.88% Impervious, Inflow Depth =
 3.05" for 10 year event

 Inflow =
 0.74 cfs @
 12.10 hrs, Volume=
 0.055 af

 Outflow =
 0.74 cfs @
 12.10 hrs, Volume=
 0.055 af, Atten= 0%, Lag= 0.0 min

 Primary =
 0.74 cfs @
 12.10 hrs, Volume=
 0.055 af

 Routed to Pond 9R : DMH#1-DMH#2
 0.055 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 81.44' @ 12.10 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	81.00'	12.0" Round Culvert
			L= 140.0' Square-edged headwall, Ke= 0.500
			Inlet / Outlet Invert= 81.00' / 78.20' S= 0.0200 '/' Cc= 0.900
			n= 0.010, Flow Area= 0.79 sf

Primary OutFlow Max=0.74 cfs @ 12.10 hrs HW=81.44' TW=79.20' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 0.74 cfs @ 2.25 fps)

Summary for Pond 9R: DMH#1-DMH#2

 Inflow Area =
 0.466 ac, 73.22% Impervious, Inflow Depth = 3.21" for 10 year event

 Inflow =
 1.60 cfs @ 12.00 hrs, Volume=
 0.124 af

 Outflow =
 1.60 cfs @ 12.00 hrs, Volume=
 0.124 af, Atten= 0%, Lag= 0.0 min

 Primary =
 1.60 cfs @ 12.00 hrs, Volume=
 0.124 af

 Routed to Pond 12R : DMH#2-CASCADE
 0.124 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 79.42' @ 12.01 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	78.20'	12.0" Round Culvert L= 135.0' Square-edged headwall, Ke= 0.500 Inlet / Outlet Invert= 78.20' / 77.55' S= 0.0048 '/' Cc= 0.900 n= 0.010, Flow Area= 0.79 sf

Primary OutFlow Max=1.49 cfs @ 12.00 hrs HW=79.42' TW=79.21' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 1.49 cfs @ 1.97 fps)

Summary for Pond 11R: DCB#2 - DMH#1

 Inflow Area =
 0.249 ac, 76.99% Impervious, Inflow Depth =
 3.34" for 10 year event

 Inflow =
 1.17 cfs @
 12.00 hrs, Volume=
 0.069 af

 Outflow =
 1.17 cfs @
 12.00 hrs, Volume=
 0.069 af, Atten= 0%, Lag= 0.0 min

 Primary =
 1.17 cfs @
 12.00 hrs, Volume=
 0.069 af

 Routed to Pond 9R : DMH#1-DMH#2
 0.069 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3

Type III 24-hr 10 year Rainfall=4.55"

KRAIL-DEV2Type IPrepared by Linden Engineering Partners, LLCHydroCAD® 10.20-3cs/n 07179© 2023 HydroCAD Software Solutions LLC

Page 79

Peak Elev= 79.52' @ 12.01 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	78.25'	12.0" Round Culvert L= 3.0' Square-edged headwall, Ke= 0.500 Inlet / Outlet Invert= 78.25' / 78.20' S= 0.0167 '/' Cc= 0.900 n= 0.010, Flow Area= 0.79 sf

Primary OutFlow Max=1.10 cfs @ 12.00 hrs HW=79.50' TW=79.42' (Dynamic Tailwater) -1=Culvert (Inlet Controls 1.10 cfs @ 1.40 fps)

Summary for Pond 12R: DMH#2-CASCADE

 Inflow Area =
 0.771 ac, 74.90% Impervious, Inflow Depth =
 3.30" for 10 year event

 Inflow =
 3.06 cfs @
 12.00 hrs, Volume=
 0.212 af

 Outflow =
 3.06 cfs @
 12.00 hrs, Volume=
 0.212 af, Atten= 0%, Lag= 0.0 min

 Primary =
 3.06 cfs @
 12.00 hrs, Volume=
 0.212 af, Atten= 0%, Lag= 0.0 min

 Routed to Pond 1R : CASCADE-SSIB#1
 0.212 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 79.21' @ 12.01 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	77.33'	15.0" Round Culvert L= 3.0' Square-edged headwall, Ke= 0.500 Inlet / Outlet Invert= 77.33' / 77.30' S= 0.0100 '/' Cc= 0.900 n= 0.010, Flow Area= 1.23 sf

Primary OutFlow Max=3.04 cfs @ 12.00 hrs HW=79.21' TW=78.94' (Dynamic Tailwater) -1=Culvert (Inlet Controls 3.04 cfs @ 2.47 fps)

Summary for Pond 14R: DCB#3-DMH#2

 Inflow Area =
 0.305 ac, 77.44% Impervious, Inflow Depth =
 3.44" for 10 year event

 Inflow =
 1.46 cfs @
 12.00 hrs, Volume=
 0.088 af

 Outflow =
 1.46 cfs @
 12.00 hrs, Volume=
 0.088 af, Atten= 0%, Lag= 0.0 min

 Primary =
 1.46 cfs @
 12.00 hrs, Volume=
 0.088 af

 Routed to Pond 12R : DMH#2-CASCADE
 0.088 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 79.33' @ 12.00 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	77.58'	12.0" Round Culvert L= 3.0' Square-edged headwall, Ke= 0.500 Inlet / Outlet Invert= 77.58' / 77.55' S= 0.0100 '/' Cc= 0.900 n= 0.010, Flow Area= 0.79 sf

Primary OutFlow Max=1.30 cfs @ 12.00 hrs HW=79.32' TW=79.20' (Dynamic Tailwater) -1=Culvert (Inlet Controls 1.30 cfs @ 1.66 fps) KING RAIL DEVELOPED STORMWATER CALCULATIONSKRAIL-DEV2Type III 24-hr10 year Rainfall=4.55"Prepared by Linden Engineering Partners, LLCPrepared by Linden Engineering Partners, LLCPage 80

Summary for Pond IB#1: NEW IB#1

Inflow Area	a =	1.346 ac,	0.00% Impervious, Inflow D	epth = 1.58" for 10 year event			
Inflow	=	1.30 cfs @	12.09 hrs, Volume=	0.177 af			
Outflow	=	1.03 cfs @	12.38 hrs, Volume=	0.164 af, Atten= 21%, Lag= 16.9 min			
Primary	=	1.03 cfs @	12.38 hrs, Volume=	0.164 af			
Routed to Reach 3269R : DIRECT FLOW TO RM							

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 78.49' @ 12.38 hrs Surf.Area= 1,649 sf Storage= 1,289 cf

Plug-Flow detention time= 91.1 min calculated for 0.164 af (93% of inflow) Center-of-Mass det. time= 51.4 min (885.7 - 834.4)

Volume	Inv	ert Avai	I.Storage	Storage I	Description	
#1	77.	50'	2,229 cf	Custom	Stage Data (P	rismatic)Listed below (Recalc)
Elevatio (fee 77.5	et)	Surf.Area (sq-ft) 976		c.Store <u>c-feet)</u> 0	Cum.Store (cubic-feet) 0	
78.0 79.0	00	1,304 2,013		570 1,659	570 2,229	
Device	Routing	In	vert Outl	et Devices	5	
#1	lr		Inlet	/ Outlet In		L= 30.0' Ke= 0.900 '7.50' S= 0.0167 '/' Cc= 0.900 f

Primary OutFlow Max=1.03 cfs @ 12.38 hrs HW=78.49' TW=0.00' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 1.03 cfs @ 1.88 fps)

Summary for Pond IB#2: IB#2

Inflow Area =	0.073 ac, 74.45% Impervious, Inflow I	Depth = 3.56" for 10 year event		
Inflow =	0.27 cfs @ 12.08 hrs, Volume=	0.022 af		
Outflow =	0.27 cfs @ 12.08 hrs, Volume=	0.022 af, Atten= 0%, Lag= 0.0 min		
Primary =	0.27 cfs @ 12.08 hrs, Volume=	0.022 af		
Routed to Reach 3269R : DIRECT FLOW TO RM				

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 77.00' @ 0.00 hrs Surf.Area= 180 sf Storage= 0 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.0 min (761.1 - 761.1)

Volume	Invert	Avail.Storage	Storage Description
#1	77.00'	630 cf	Custom Stage Data (Prismatic)Listed below (Recalc)

KING RAIL DEVELOPED STORMWATER CALCULATIONS

KRAIL-DEV2

Type III 24-hr 10 year Rainfall=4.55"

Prepared by Linden Engineering Partners, LLC HydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC

Page 81

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
77.00	180	0	0
78.00	310	245	245
78.50	378	172	417
79.00	475	213	630

 Device
 Routing
 Invert
 Outlet Devices

 #1
 Primary
 50.00'
 30.0' long x 2.0' breadth Broad-Crested Rectangular Weir Head (feet)
 0.20
 0.40
 0.60
 0.80
 1.00
 1.20
 1.40
 1.60
 1.80
 2.00
 2.50
 3.00
 3.50
 Coef. (English)
 2.54
 2.61
 2.61
 2.60
 2.70
 2.77
 2.89
 2.88
 2.85
 3.07
 3.20
 3.32

Primary OutFlow Max=0.00 cfs @ 12.08 hrs HW=77.00' TW=0.00' (Dynamic Tailwater) **1=Broad-Crested Rectangular Weir** (Passes 0.00 cfs of 13,973.49 cfs potential flow)

Summary for Pond SSIB#1: SSIB#1

Inflow Area =	0.771 ac, 74.90% Impervious, Inflow	v Depth = 3.30" for 10 year event		
Inflow =	3.06 cfs @ 12.00 hrs, Volume=	0.212 af		
Outflow =	2.58 cfs @12.05 hrs, Volume=	0.164 af, Atten= 16%, Lag= 2.6 min		
Primary =	2.58 cfs @12.05 hrs, Volume=	0.164 af		
Routed to Reach 16R : FLOW THRIOUGH NEW 18" PIPE				

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 78.87' @ 12.05 hrs Surf.Area= 1,652 sf Storage= 2,764 cf

Plug-Flow detention time= 142.2 min calculated for 0.164 af (77% of inflow) Center-of-Mass det. time= 60.7 min (855.6 - 794.9)

Volume	Invert	Avail.Storage	Storage Description
#1A	76.50'	1,289 cf	28.00'W x 59.00'L x 3.21'H Field A
			5,300 cf Overall - 2,077 cf Embedded = 3,224 cf x 40.0% Voids
#2A	77.00'	2,077 cf	Cultec R-280HD x 48 Inside #1
			Effective Size= 46.9"W x 26.0"H => 6.07 sf x 7.00'L = 42.5 cf
			Overall Size= 47.0"W x 26.5"H x 8.00'L with 1.00' Overlap
			Row Length Adjustment= +1.00' x 6.07 sf x 6 rows
		3,366 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	78.30'	8.0" Round Culvert X 4.00 L= 11.0' Ke= 0.900 Inlet / Outlet Invert= 78.30' / 78.19' S= 0.0100 '/' Cc= 0.900 n= 0.010. Flow Area= 0.35 sf

Primary OutFlow Max=2.58 cfs @ 12.05 hrs HW=78.87' TW=0.00' (Dynamic Tailwater) -1=Culvert (Barrel Controls 2.58 cfs @ 2.72 fps)

Summary for Subcatchment 3276S: AREA DIRECTLY TRIBUTARY TO RM

Runoff = 0.35 cfs @ 12.14 hrs, Volume= 0.029 af, Depth= 2.21" Routed to Reach 3269R : DIRECT FLOW TO RM

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25 year Rainfall=5.45"

A	rea (sf)	CN I	Description				
	5,649	61 >	>75% Gras	s cover, Go	od, HSG B		
	600	98 I	Paved road	s w/curbs &	sewers, HSG B		
	175	98 \	Nater Surfa	ace, HSG B			
	500	98 I	Paved park	ing, HSG B			
	6,924	68 \	Neighted A	verage			
	5,649	8	81.59% Pervious Area				
	1,275		18.41% Imp	pervious Ar	a		
Тс	Length	Slope		Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
9.9	45	0.0100	0.08		Sheet Flow,		
					Grass: Dense n= 0.240 P2= 3	.20"	

Summary for Subcatchment D-1: D-1 TO CASIN

Runoff = 0.22 cfs @ 12.10 hrs, Volume= 0.017 af, Depth= 1.65" Routed to Reach 3275R : TOTAL FLOW FROM WORK AREA

_	A	rea (sf)	CN I	Description			_
		5,387	61 :	>75% Gras	s cover, Go	ood, HSG B	
		5,387		100.00% Pe	ervious Are	a	
	Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description	
	5.3	50	0.0600	0.16		Sheet Flow, 50	
	1.0	87	0.0600	1.47		Grass: Dense n= 0.240 P2= 3.20" Shallow Concentrated Flow, Kv= 6.0 fps	
_	0.0	8	0.5000	4.24		Shallow Concentrated Flow, Kv= 6.0 fps	
	6.3	145	Total				

Summary for Subcatchment D-2A: D-2A

Runoff = 1.09 cfs @ 12.36 hrs, Volume= 0.136 af, Depth= 1.50" Routed to Pond IB#1 : NEW IB#1

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25 year Rainfall=5.45"

A	rea (sf)	CN D	escription						
	4,200	56 B	56 Brush, Fair, HSG B						
	30,622		,	on-grazed,					
	12,593	61 >	75% Gras	s cover, Go	ood, HSG B				
	47,415		Veighted A	•					
	47,415	1	00.00% Pe	ervious Are	а				
т.	1	01.0.0.0	\/_lit.	0	Description				
Tc (min)	Length	Slope	Velocity	Capacity	Description				
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)					
7.0	50	0.0300	0.12		Sheet Flow,				
					Grass: Dense n= 0.240 P2= 3.20"				
2.4	150	0.0300	1.04		Shallow Concentrated Flow,				
					Kv= 6.0 fps				
1.4	50	0.0100	0.60		Shallow Concentrated Flow,				
					Kv= 6.0 fps				
10.4	264	0.0050	0.42		Shallow Concentrated Flow,				
					Kv= 6.0 fps				
2.3	147	0.0050	1.06		Shallow Concentrated Flow,				
					Grassed Waterway Kv= 15.0 fps				
23.5	661	Total							

Summary for Subcatchment D-2B: D-2B

Runoff = 1.36 cfs @ 12.08 hrs, Volume= 0.107 af, Depth= 4.98" Routed to Pond IB#1 : NEW IB#1

Α	rea (sf)	CN	Description					
	8,200	96	Gravel surfa	ace, HSG E	3			
	3,025	96	Gravel surfa	ace, HSG E	3			
	11,225	96	Weighted Average					
	11,225		100.00% Pe	ervious Are	a			
-			N/ 1 ⁻¹	0				
Тс	Length	Slope	,	Capacity	Description			
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)				
6.0					Direct Entry,			

Summary for Subcatchment D-3A: Clubhouse Roof

Runoff	=	0.29 cfs @	12.08 hrs,	Volume=	0.024 af,	Depth= 5.21"
Routed	l to Ponc	I IB#2 : IB#2				

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25 year Rainfall=5.45"

A	rea (sf)	CN [Description			
	2,360	98 F	Roofs, HSG	βB		
	2,360		100.00% In	npervious A	rea	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
6.0					Direct Entry,	

Summary for Subcatchment D-3B: Direct to IB#2

Runoff	=	0.04 cfs @	12.09 hrs,	Volume=	0.003 af,	Depth= 1	1.96"
Routed	to Pond	IB#2 : IB#2					

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25 year Rainfall=5.45"

Α	rea (sf)	CN	Description						
	180	79	<50% Gras	s cover, Po	oor, HSG B				
	630	61	>75% Gras	s cover, Go	ood, HSG B				
	810	65	Weighted A	Weighted Average					
	810		100.00% Pervious Area						
Тс	Length	Slope	,	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
6.0					Direct Entry,				

Summary for Subcatchment D-4A: D-2

Runoff = 0.94 cfs @ 12.10 hrs, Volume= Routed to Pond 6R : DCB#1- DMH#1 0.070 af, Depth= 3.89"

Area (sf)	CN	Description
6,485	98	Paved parking, HSG B
2,930	61	>75% Grass cover, Good, HSG B
9,415	86	Weighted Average
2,930		31.12% Pervious Area
6,485		68.88% Impervious Area

KING RAIL DEVELOPED STORMWATER CALCULATIONS

Type III 24-hr 25 year Rainfall=5.45"

3 1	
Prepared by Linden Engineering Partners, LLC	
HydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC	

Page 85

	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
_	5.3	50	0.0600	0.16		Sheet Flow,	-
						Grass: Dense n= 0.240 P2= 3.20"	
	1.0	90	0.0600	1.47		Shallow Concentrated Flow, Kv= 6.0 fps	
	0.5	154	0.0600	4.97		Shallow Concentrated Flow,	
	0.0	104	0.0000	4.07		Paved Kv= 20.3 fps	_
	6.8	294	Total				_

Summary for Subcatchment D-4B: (new Subcat)

Runoff	=	1.45 cfs @	12.00 hrs,	Volume=	30.0	87 af, Depth= 4.20"
Routed	to Pond	11R : DCB#	2 - DMH#1			·

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25 year Rainfall=5.45"

Area (sf)	CN	Description		
8,365	98	Paved parking, HSG B		
2,500	61	>75% Grass cover, Good, HSG B		
10,865	89	Weighted Average		
2,500		23.01% Pervious Area		
8,365		76.99% Impervious Area		

Summary for Subcatchment D-4C: D-4C

Runoff = 1.81 cfs @ 12.00 hrs, Volume= 0.110 af, Depth= 4.31" Routed to Pond 14R : DCB#3-DMH#2

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25 year Rainfall=5.45"

Area (sf)	CN	Description	
10,300	98	Paved roads w/curbs & sewers, HSG B	
3,000	61	>75% Grass cover, Good, HSG B	
13,300	90	Weighted Average	
3,000		22.56% Pervious Area	
10,300		77.44% Impervious Area	

Summary for Subcatchment D-5: ON-SITE TO YARD CBS

Runoff = 0.15 cfs @ 12.22 hrs, Volume= 0.015 af, Depth= 1.65" Routed to Reach 3274R : YARD CBS TO PICKUP FLOW FROM LIFE

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25 year Rainfall=5.45"

KRAIL-DEV2

KING RAIL DEVELOPED STORMWATER CALCULATIONS

KRAIL-DEV2

Type III 24-hr 25 year Rainfall=5.45" Prepared by Linden Engineering Partners, LLC

HydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC Page 86

A	rea (sf)	CN [Description					
	4,875	61 >	61 >75% Grass cover, Good, HSG B					
	4,875	100.00% Pervious Area			а			
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
14.3	50	0.0050	0.06		Sheet Flow, Grass: Dense	n= 0.240	P2= 3.20"	

Summary for Subcatchment OS-2: OS-2

0.11 cfs @ 12.10 hrs, Volume= 0.008 af, Depth= 1.65" Runoff = Routed to Reach 3274R : YARD CBS TO PICKUP FLOW FROM LIFE

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25 year Rainfall=5.45"

_	A	rea (sf)	CN	Description					
_		2,641	61	61 >75% Grass cover, Good, HSG B					
		2,641		100.00% Pe	ervious Are	а			
	Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description			
	4.8	40	0.0500	0.14		Sheet Flow, Grass: Dense	n = 0.240	P2-3.20"	
_	4.8	40	Total,	Increased t	o minimum	Tc = 6.0 min	11- 0.240	1 2- 3.20	

Summary for Subcatchment OS-3: OS-3

Runoff 0.39 cfs @ 12.10 hrs, Volume= 0.029 af, Depth= 1.80" = Routed to Reach 3274R : YARD CBS TO PICKUP FLOW FROM LIFE

A	rea (sf)	CN [Description					
	500	98 F	Paved park	ing, HSG B	}			
	7,926	61 >	75% Gras	s cover, Go	ood, HSG B			
	8,426	63 V	Veighted A	verage				
	7,926	ç	94.07% Per	vious Area				
	500	5	5.93% Impe	ervious Area	а			
Тс	Length	Slope		Capacity	Description			
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)				
4.1	50	0.1100	0.20		Sheet Flow,			
					Grass: Dense	n= 0.240	P2= 3.20"	
4.1	50	Total, I	ncreased t	o minimum	Tc = 6.0 min			

Summary for Subcatchment OS-4: OS-4

Runoff = 0.41 cfs @ 12.09 hrs, Volume= 0.030 af, Depth= 1.88" Routed to Reach 3274R : YARD CBS TO PICKUP FLOW FROM LIFE

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25 year Rainfall=5.45"

A	rea (sf)	CN E	CN Description					
	700	98 F	Paved park	ing, HSG E	}			
	7,685	61 >	75% Gras	s cover, Go	ood, HSG B			
	8,385	64 V	Veighted A	verage				
	7,685	g	1.65% Per	vious Area	l			
	700	8	8.35% Impe	ervious Are	а			
_								
Tc	Length	Slope	Velocity	Capacity	Description			
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)				
5.6	44	0.0400	0.13		Sheet Flow,			
					Grass: Dense	n= 0.240	P2= 3.20"	
5.6	44	Total, I	ncreased t	o minimum	n Tc = 6.0 min			

Summary for Subcatchment OS-5: OS-5

Runoff = 0.20 cfs @ 12.10 hrs, Volume= 0.015 af, Depth= 1.65" Routed to Reach 3274R : YARD CBS TO PICKUP FLOW FROM LIFE

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25 year Rainfall=5.45"

_	A	rea (sf)	CN	Description					
_		4,795	61	>75% Gras	s cover, Go	ood, HSG B			
		4,795		100.00% Pe	ervious Are	а			
	Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description			
	5.8	46	0.0400	0.13		Sheet Flow, Grass: Dense	n= 0.240	P2= 3.20"	
-	5.8	46	Total,	Increased t	o minimum	Tc = 6.0 min			

Summary for Reach 16R: FLOW THRIOUGH NEW 18" PIPE

 Inflow Area =
 1.439 ac, 42.02% Impervious, Inflow Depth =
 2.64" for 25 year event

 Inflow =
 4.27 cfs @
 12.07 hrs, Volume=
 0.317 af

 Outflow =
 4.27 cfs @
 12.07 hrs, Volume=
 0.317 af, Atten= 0%, Lag= 0.0 min

 Routed to Reach 3269R : DIRECT FLOW TO RM
 0.317 af, Atten= 0%, Lag= 0.0 min
 0.317 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3

Summary for Reach 3269R: DIRECT FLOW TO RM

Inflow Area = 3.017 ac, 22.81% Impervious, Inflow Depth = 2.39" for 25 year event Inflow = 5.85 cfs @ 12.09 hrs, Volume= 0.602 af Outflow = 5.85 cfs @ 12.09 hrs, Volume= 0.602 af, Atten= 0%, Lag= 0.0 min Routed to Reach 3275R : TOTAL FLOW FROM WORK AREA

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3

Summary for Reach 3274R: YARD CBS TO PICKUP FLOW FROM LIFE

Inflow Area = 0.669 ac, 4.12% Impervious, Inflow Depth = 1.76" for 25 year event Inflow = 1.20 cfs @ 12.10 hrs, Volume= 0.098 af Outflow = 1.20 cfs @ 12.10 hrs, Volume= 0.098 af, Atten= 0%, Lag= 0.0 min Routed to Reach 16R : FLOW THRIOUGH NEW 18" PIPE

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3

Summary for Reach 3275R: TOTAL FLOW FROM WORK AREA

Inflow Area	a =	3.141 ac, 21.92% Impervious, Inflow Depth = 2.37" for 25 year event	
Inflow	=	6.07 cfs @ 12.09 hrs, Volume= 0.619 af	
Outflow	=	6.07 cfs @ 12.09 hrs, Volume= 0.619 af, Atten= 0%, Lag= 0.0 r	min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3

Summary for Pond 1R: CASCADE-SSIB#1

 Inflow Area =
 0.771 ac, 74.90% Impervious, Inflow Depth = 4.16" for 25 year event

 Inflow =
 3.81 cfs @
 12.00 hrs, Volume=
 0.267 af

 Outflow =
 3.81 cfs @
 12.00 hrs, Volume=
 0.267 af, Atten= 0%, Lag= 0.0 min

 Primary =
 3.81 cfs @
 12.00 hrs, Volume=
 0.267 af

 Routed to Pond SSIB#1 : SSIB#1
 0.267 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 79.15' @ 12.03 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	77.23'	18.0" Round Culvert L= 8.0' Square-edged headwall, Ke= 0.500 Inlet / Outlet Invert= 77.23' / 77.20' S= 0.0038 '/' Cc= 0.900 n= 0.010, Flow Area= 1.77 sf

Primary OutFlow Max=3.78 cfs @ 12.00 hrs HW=79.13' TW=78.93' (Dynamic Tailwater) -1=Culvert (Inlet Controls 3.78 cfs @ 2.14 fps) KING RAIL DEVELOPED STORMWATER CALCULATIONSKRAIL-DEV2Type III 24-hr 25 year Rainfall=5.45"Prepared by Linden Engineering Partners, LLCPrepared by Linden Engineering Partners, LLCHydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLCPage 89

Summary for Pond 6R: DCB#1- DMH#1

 Inflow Area =
 0.216 ac, 68.88% Impervious, Inflow Depth =
 3.89" for 25 year event

 Inflow =
 0.94 cfs @
 12.10 hrs, Volume=
 0.070 af

 Outflow =
 0.94 cfs @
 12.10 hrs, Volume=
 0.070 af, Atten= 0%, Lag= 0.0 min

 Primary =
 0.94 cfs @
 12.10 hrs, Volume=
 0.070 af

 Routed to Pond 9R : DMH#1-DMH#2
 0.070 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 81.50' @ 12.10 hrs

Device	Routing	Invert	Outlet Devices
<u>#1</u>	Primary		12.0" Round Culvert L= 140.0' Square-edged headwall, Ke= 0.500 Inlet / Outlet Invert= 81.00' / 78.20' S= 0.0200 '/' Cc= 0.900
#1	Primary	81.00'	L= 140.0' Square-edged headwall, Ke= 0.500

Primary OutFlow Max=0.94 cfs @ 12.10 hrs HW=81.50' TW=79.43' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 0.94 cfs @ 2.40 fps)

Summary for Pond 9R: DMH#1-DMH#2

Inflow Area =	0.466 ac, 73.22% Impervious, Inflow De	epth = 4.06" for 25 year event				
Inflow =	2.00 cfs @ 12.00 hrs, Volume=	0.157 af				
Outflow =	2.00 cfs @ 12.00 hrs, Volume=	0.157 af, Atten= 0%, Lag= 0.0 min				
Primary =	2.00 cfs @ 12.00 hrs, Volume=	0.157 af				
Routed to Pond 12R : DMH#2-CASCADE						

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 79.92' @ 12.00 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	78.20'	12.0" Round Culvert L= 135.0' Square-edged headwall, Ke= 0.500 Inlet / Outlet Invert= 78.20' / 77.55' S= 0.0048 '/' Cc= 0.900 n= 0.010, Flow Area= 0.79 sf

Primary OutFlow Max=1.90 cfs @ 12.00 hrs HW=79.90' TW=79.54' (Dynamic Tailwater) ←1=Culvert (Outlet Controls 1.90 cfs @ 2.42 fps)

Summary for Pond 11R: DCB#2 - DMH#1

 Inflow Area =
 0.249 ac, 76.99% Impervious, Inflow Depth = 4.20" for 25 year event

 Inflow =
 1.45 cfs @ 12.00 hrs, Volume=
 0.087 af

 Outflow =
 1.45 cfs @ 12.00 hrs, Volume=
 0.087 af, Atten= 0%, Lag= 0.0 min

 Primary =
 1.45 cfs @ 12.00 hrs, Volume=
 0.087 af

 Routed to Pond 9R : DMH#1-DMH#2
 0.087 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3

Type III 24-hr 25 year Rainfall=5.45"

KRAIL-DEV2Type InPrepared by Linden Engineering Partners, LLCHydroCAD® 10.20-3cs/n 07179© 2023 HydroCAD Software Solutions LLC

Page 90

Peak Elev= 80.04' @ 12.01 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	78.25'	12.0" Round Culvert L= 3.0' Square-edged headwall, Ke= 0.500 Inlet / Outlet Invert= 78.25' / 78.20' S= 0.0167 '/' Cc= 0.900 n= 0.010, Flow Area= 0.79 sf

Primary OutFlow Max=1.35 cfs @ 12.00 hrs HW=80.03' TW=79.90' (Dynamic Tailwater) -1=Culvert (Inlet Controls 1.35 cfs @ 1.72 fps)

Summary for Pond 12R: DMH#2-CASCADE

 Inflow Area =
 0.771 ac, 74.90% Impervious, Inflow Depth =
 4.16" for 25 year event

 Inflow =
 3.81 cfs @
 12.00 hrs, Volume=
 0.267 af

 Outflow =
 3.81 cfs @
 12.00 hrs, Volume=
 0.267 af, Atten= 0%, Lag= 0.0 min

 Primary =
 3.81 cfs @
 12.00 hrs, Volume=
 0.267 af

 Routed to Pond 1R : CASCADE-SSIB#1
 0.267 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 79.54' @ 12.01 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	77.33'	15.0" Round Culvert L= 3.0' Square-edged headwall, Ke= 0.500 Inlet / Outlet Invert= 77.33' / 77.30' S= 0.0100 '/' Cc= 0.900
			n= 0.010, Flow Area= 1.23 sf

Primary OutFlow Max=3.78 cfs @ 12.00 hrs HW=79.53' TW=79.13' (Dynamic Tailwater) -1=Culvert (Inlet Controls 3.78 cfs @ 3.08 fps)

Summary for Pond 14R: DCB#3-DMH#2

 Inflow Area =
 0.305 ac, 77.44% Impervious, Inflow Depth = 4.31" for 25 year event

 Inflow =
 1.81 cfs @ 12.00 hrs, Volume=
 0.110 af

 Outflow =
 1.81 cfs @ 12.00 hrs, Volume=
 0.110 af, Atten= 0%, Lag= 0.0 min

 Primary =
 1.81 cfs @ 12.00 hrs, Volume=
 0.110 af

 Routed to Pond 12R : DMH#2-CASCADE
 0.110 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 79.74' @ 12.00 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	77.58'	12.0" Round Culvert L= 3.0' Square-edged headwall, Ke= 0.500 Inlet / Outlet Invert= 77.58' / 77.55' S= 0.0100 '/' Cc= 0.900 n= 0.010, Flow Area= 0.79 sf

Primary OutFlow Max=1.66 cfs @ 12.00 hrs HW=79.73' TW=79.53' (Dynamic Tailwater) -1=Culvert (Inlet Controls 1.66 cfs @ 2.12 fps) KING RAIL DEVELOPED STORMWATER CALCULATIONS **KRAIL-DEV2**Type III 24-hr 25 year Rainfall=5.45"
Prepared by Linden Engineering Partners, LLC
HydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC
Page 91

Summary for Pond IB#1: NEW IB#1

Inflow Area	a =	1.346 ac,	0.00% Impervious, Inflow De	epth = 2.16" for 25 year event			
Inflow	=	1.74 cfs @	12.10 hrs, Volume=	0.243 af			
Outflow	=	1.47 cfs @	12.40 hrs, Volume=	0.230 af, Atten= 15%, Lag= 18.4 min			
Primary	=	1.47 cfs @	12.40 hrs, Volume=	0.230 af			
Routed to Reach 3269R : DIRECT FLOW TO RM							

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 78.64' @ 12.40 hrs Surf.Area= 1,756 sf Storage= 1,545 cf

Plug-Flow detention time= 73.0 min calculated for 0.230 af (95% of inflow) Center-of-Mass det. time= 42.9 min (874.9 - 832.0)

Volume	Inv	ert Avai	I.Storage	Storage	Description		
#1	77.	50'	2,229 cf	Custom	Stage Data (P	rismatic)Listed below	/ (Recalc)
Elevatio (fee		Surf.Area (sq-ft)		c.Store c-feet)	Cum.Store (cubic-feet)		
77.50		976	•.•		0		
78.0	00	1,304		570	570		
79.00		2,013		1,659	2,229		
Device	Routing	In	vert Outl	et Devices	5		
#1	Primary	78	Inlet	8.0" Round Culvert X 2.00 L= 30.0' Ke= 0.900 Inlet / Outlet Invert= 78.00' / 77.50' S= 0.0167 '/' Cc= 0.900 n= 0.010, Flow Area= 0.35 sf			

Primary OutFlow Max=1.47 cfs @ 12.40 hrs HW=78.64' TW=0.00' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 1.47 cfs @ 2.15 fps)

Summary for Pond IB#2: IB#2

Inflow Area	a =	0.073 ac, 7	74.45% Imp	ervious,	Inflow Depth	= 4.38"	for 25	year event
Inflow	=	0.33 cfs @	12.08 hrs,	Volume	= 0.02	27 af		-
Outflow	=	0.33 cfs @	12.08 hrs,	Volume	= 0.02	27 af, At	tten= 0%,	Lag= 0.0 min
Primary	=	0.33 cfs @	12.08 hrs,	Volume	= 0.02	27 af		•
Routed to Reach 3269R : DIRECT FLOW TO RM								

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 77.00' @ 0.00 hrs Surf.Area= 180 sf Storage= 0 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.0 min (759.1 - 759.1)

Volume	Invert	Avail.Storage	Storage Description
#1	77.00'	630 cf	Custom Stage Data (Prismatic)Listed below (Recalc)

KING RAIL DEVELOPED STORMWATER CALCULATIONS

KRAIL-DEV2

Type III 24-hr 25 year Rainfall=5.45"

Prepared by Linden Engineering Partners, LLC HydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC

Page 92

Elevation (feet)		Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
77.0	00	180	0	0	
78.0	00	310	245	245	
78.5	50	378	172	417	
79.0	00	475	213	630	
Device	Routing	Invert	Outlet Devices		
#1	Primary	50.00'	Head (feet) 0.2 2.50 3.00 3.50	0 0.40 0.60	oad-Crested Rectangular Weir0.801.001.201.401.601.802.00612.602.662.702.772.892.88

2.85 3.07 3.20 3.32 **Primary OutFlow** Max=0.00 cfs @ 12.08 hrs HW=77.00' TW=0.00' (Dynamic Tailwater)

1=Broad-Crested Rectangular Weir (Passes 0.00 cfs of 13,973.49 cfs potential flow)

Summary for Pond SSIB#1: SSIB#1

Inflow Area	a =	0.771 ac, 74	4.90% Impervious,	Inflow Depth = 4.16" for 2	25 year event		
Inflow	=	3.81 cfs @	12.00 hrs, Volume	= 0.267 af	•		
Outflow	=	3.21 cfs @	12.05 hrs, Volume	= 0.219 af, Atten= 16	5%, Lag= 2.6 min		
Primary	=	3.21 cfs @	12.05 hrs, Volume	= 0.219 af	•		
Routed to Reach 16R : FLOW THRIOUGH NEW 18" PIPE							

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 79.00' @ 12.05 hrs Surf.Area= 1,652 sf Storage= 2,883 cf

Plug-Flow detention time= 124.3 min calculated for 0.219 af (82% of inflow) Center-of-Mass det. time= 53.1 min (841.7 - 788.6)

Volume	Invert	Avail.Storage	Storage Description
#1A	76.50'	1,289 cf	28.00'W x 59.00'L x 3.21'H Field A
			5,300 cf Overall - 2,077 cf Embedded = 3,224 cf x 40.0% Voids
#2A	77.00'	2,077 cf	Cultec R-280HD x 48 Inside #1
			Effective Size= 46.9"W x 26.0"H => 6.07 sf x 7.00'L = 42.5 cf
			Overall Size= 47.0"W x 26.5"H x 8.00'L with 1.00' Overlap
			Row Length Adjustment= +1.00' x 6.07 sf x 6 rows
		3,366 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	78.30'	8.0" Round Culvert X 4.00 L= 11.0' Ke= 0.900 Inlet / Outlet Invert= 78.30' / 78.19' S= 0.0100 '/' Cc= 0.900
			8.0" Round Culvert X 4.00 L= 11.0' Ke= 0.900

Primary OutFlow Max=3.21 cfs @ 12.05 hrs HW=79.00' TW=0.00' (Dynamic Tailwater) -1=Culvert (Inlet Controls 3.21 cfs @ 2.30 fps)

Summary for Subcatchment 3276S: AREA DIRECTLY TRIBUTARY TO RM

Runoff = 0.49 cfs @ 12.14 hrs, Volume= 0.040 af, Depth= 3.01" Routed to Reach 3269R : DIRECT FLOW TO RM

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100 year Rainfall=6.50"

A	rea (sf)	CN I	Description			
	5,649	61 >	>75% Gras	s cover, Go	od, HSG B	
	600	98 I	Paved road	s w/curbs &	sewers, HSG B	
	175	98 \	Nater Surfa	ace, HSG B		
	500	98 I	Paved park	ing, HSG B		
	6,924	68 \	Neighted A	verage		
	5,649	8	31.59% Per	vious Area		
	1,275		18.41% Imp	pervious Ar	a	
Тс	Length	Slope		Capacity	Description	
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
9.9	45	0.0100	0.08		Sheet Flow,	
					Grass: Dense n= 0.240 P2= 3	.20"

Summary for Subcatchment D-1: D-1 TO CASIN

Runoff = 0.33 cfs @ 12.10 hrs, Volume= 0.024 af, Depth= 2.35" Routed to Reach 3275R : TOTAL FLOW FROM WORK AREA

_	A	rea (sf)	CN [Description						
	5,387 61 >75% Grass cover, Good, HSG B									
		5,387	-	100.00% Pe	ervious Are	a				
_	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
	5.3	50	0.0600	0.16		Sheet Flow, 50				
	1.0	87	0.0600	1.47		Grass: Dense n= 0.240 P2= 3.20" Shallow Concentrated Flow, Kv= 6.0 fps				
	0.0	8	0.5000	4.24		Shallow Concentrated Flow, Kv= 6.0 fps				
	6.3	145	Total							

Type III 24-hr 100 year Rainfall=6.50"

Prepared by Linden Engineering Partners, LLC HydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC

Page 94

Summary for Subcatchment D-2A: D-2A

Runoff = 1.65 cfs @ 12.35 hrs, Volume= 0.196 af, Depth= 2.17" Routed to Pond IB#1 : NEW IB#1

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100 year Rainfall=6.50"

A	rea (sf)	CN D	escription								
	4,200	56 B	Brush, Fair, HSG B								
	30,622	58 N	Meadow, non-grazed, HSG B								
	12,593										
	47,415	415 59 Weighted Average									
	47,415	1	00.00% Pe	ervious Are	а						
Tc	Length	Slope	Velocity	Capacity	Description						
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)							
7.0	50	0.0300	0.12		Sheet Flow,						
					Grass: Dense n= 0.240 P2= 3.20"						
2.4	150	0.0300	1.04		Shallow Concentrated Flow,						
					Kv= 6.0 fps						
1.4	50	0.0100	0.60		Shallow Concentrated Flow,						
					Kv= 6.0 fps						
10.4	264	0.0050	0.42		Shallow Concentrated Flow,						
					Kv= 6.0 fps						
2.3	147	0.0050	1.06		Shallow Concentrated Flow,						
					Grassed Waterway Kv= 15.0 fps						
23.5	661	Total									

Summary for Subcatchment D-2B: D-2B

Runoff = 1.63 cfs @ 12.08 hrs, Volume= 0.129 af, Depth= 6.03" Routed to Pond IB#1 : NEW IB#1

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100 year Rainfall=6.50"

A	rea (sf)	CN	Description		
	8,200	96	Gravel surfa	ace, HSG E	3
	3,025	96	Gravel surfa	ace, HSG E	3
	11,225	96	Weighted A	verage	
	11,225		100.00% Pe	ervious Are	а
Tc (min)	Length (feet)	Slope (ft/ft	,	Capacity (cfs)	Description
6.0			//		Direct Entry,

KRAIL-DEV2

Summary for Subcatchment D-3A: Clubhouse Roof

Runoff	=	0.35 cfs @	12.08 hrs,	Volume=	0.028 af,	Depth=	6.26"
Routed	to Pond	I IB#2 : IB#2					

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100 year Rainfall=6.50"

Area (sf)	CN	Description				
2,360	98	Roofs, HSG	βB			
2,360	2,360 100.00% Impervious Area					
Tc Length (min) (feet		,	Capacity (cfs)	Description		
6.0				Direct Entry,		

Summary for Subcatchment D-3B: Direct to IB#2

Runoff	=	0.06 cfs @	12.09 hrs,	Volume=	0.004 af,	Depth= 2.72"
Routed	to Pond	IB#2 : IB#2				

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100 year Rainfall=6.50"

Α	rea (sf)	CN I	Description							
	180	79 ·	<50% Grass cover, Poor, HSG B							
	630	61 :	>75% Gras	s cover, Go	ood, HSG B					
	810	65	Neighted A	verage						
	810		100.00% Pe	ervious Are	ea					
Тс	Length	Slope	,	Capacity	Description					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
6.0					Direct Entry,					

Summary for Subcatchment D-4A: D-2

Runoff = 1.17 cfs @ 12.10 hrs, Volume= Routed to Pond 6R : DCB#1- DMH#1

0.088 af, Depth= 4.89"

Area (sf)	CN	Description
6,485	98	Paved parking, HSG B
2,930	61	>75% Grass cover, Good, HSG B
9,415	86	Weighted Average
2,930		31.12% Pervious Area
6,485		68.88% Impervious Area

KING RAIL DEVELOPED STORMWATER CALCULATIONS

Type III 24-hr 100 year Rainfall=6.50"

Prepared by Linden Engineering Partners, LLC HydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC

Page 96

	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
	5.3	50	0.0600	0.16		Sheet Flow,	
						Grass: Dense n= 0.240 P2= 3.20"	
	1.0	90	0.0600	1.47		Shallow Concentrated Flow,	
						Kv= 6.0 fps	
	0.5	154	0.0600	4.97		Shallow Concentrated Flow,	
_						Paved Kv= 20.3 fps	
	6.8	294	Total				

Summary for Subcatchment D-4B: (new Subcat)

Runoff = 1.78 cfs @ 12.00 hrs, Volume= 0.109 af, Depth= 5.22" Routed to Pond 11R : DCB#2 - DMH#1

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100 year Rainfall=6.50"

Area (sf)	CN	Description
8,365	98	Paved parking, HSG B
2,500	61	>75% Grass cover, Good, HSG B
10,865	89	Weighted Average
2,500		23.01% Pervious Area
8,365		76.99% Impervious Area

Summary for Subcatchment D-4C: D-4C

Runoff = 2.21 cfs @ 12.00 hrs, Volume= 0.136 af, Depth= 5.33" Routed to Pond 14R : DCB#3-DMH#2

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100 year Rainfall=6.50"

Area (sf)	CN	Description
10,300	98	Paved roads w/curbs & sewers, HSG B
3,000	61	>75% Grass cover, Good, HSG B
13,300	90	Weighted Average
3,000		22.56% Pervious Area
10,300		77.44% Impervious Area

Summary for Subcatchment D-5: ON-SITE TO YARD CBS

Runoff = 0.23 cfs @ 12.21 hrs, Volume= 0.022 af, Depth= 2.35" Routed to Reach 3274R : YARD CBS TO PICKUP FLOW FROM LIFE

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100 year Rainfall=6.50"

KRAIL-DEV2

KING RAIL DEVELOPED STORMWATER CALCULATIONS

Type III 24-hr 100 year Rainfall=6.50"

Prepared by Linden Engineering Partners, LLC HydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC

Page 97

A	rea (sf)	CN	Description								
	4,875	61	61 >75% Grass cover, Good, HSG B								
	4,875	100.00% Pervious Area									
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description						
14.3	50	0.0050	0.06		Sheet Flow, Grass: Dense	n= 0.240	P2= 3.20"				

Summary for Subcatchment OS-2: OS-2

Runoff = 0.16 cfs @ 12.09 hrs, Volume= 0.012 af, Depth= 2.35" Routed to Reach 3274R : YARD CBS TO PICKUP FLOW FROM LIFE

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100 year Rainfall=6.50"

	A	rea (sf)	CN	Description						
		2,641	61	61 >75% Grass cover, Good, HSG B						
		2,641		100.00% Pervious Area						
	Tc (min)	Length (feet)	Slope (ft/ft	,	Capacity (cfs)	Description				
	4.8	40	0.0500	0.14		Sheet Flow,				
_						Grass: Dense	n= 0.240	P2= 3.20"		
	4.8	40	Total,	Increased t	o minimum	Tc = 6.0 min				

Summary for Subcatchment OS-3: OS-3

Runoff = 0.56 cfs @ 12.09 hrs, Volume= 0.041 af, Depth= 2.53" Routed to Reach 3274R : YARD CBS TO PICKUP FLOW FROM LIFE

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100 year Rainfall=6.50"

A	rea (sf)	CN I	Description					
	500	98 I	Paved park	ing, HSG B	}			
	7,926	61 >	>75% Gras	s cover, Go	ood, HSG B			
	8,426	63 V	Neighted A	verage				
	7,926	ę	94.07% Per	vious Area				
	500	Ę	5.93% Impe	ervious Are	а			
Тс	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
4.1	50	0.1100	0.20		Sheet Flow,			
					Grass: Dense	n= 0.240	P2= 3.20"	
4.1	50	Total,	Increased t	o minimum	Tc = 6.0 min			

KRAIL-DEV2

Summary for Subcatchment OS-4: OS-4

Runoff = 0.58 cfs @ 12.09 hrs, Volume= 0.042 af, Depth= 2.63" Routed to Reach 3274R : YARD CBS TO PICKUP FLOW FROM LIFE

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100 year Rainfall=6.50"

A	rea (sf)	CN E	CN Description					
	700	98 F	Paved park	ing, HSG B	}			
	7,685	61 >	75% Gras	s cover, Go	ood, HSG B			
	8,385	64 V	Veighted A	verage				
	7,685	g	91.65% Pervious Area					
	700	8	8.35% Impe	ervious Are	а			
Tc	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
5.6	44	0.0400	0.13		Sheet Flow,			
					Grass: Dense	n= 0.240	P2= 3.20"	
5.6	44	Total, I	ncreased t	o minimum	Tc = 6.0 min			

Summary for Subcatchment OS-5: OS-5

Runoff = 0.29 cfs @ 12.09 hrs, Volume= 0.022 af, Depth= 2.35" Routed to Reach 3274R : YARD CBS TO PICKUP FLOW FROM LIFE

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100 year Rainfall=6.50"

Are	ea (sf)	CN [Description					
	4,795	61 >	>75% Gras	s cover, Go	ood, HSG B			
	4,795		100.00% Pe	ervious Are	а			
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
5.8	46	0.0400	0.13		Sheet Flow, Grass: Dense	n= 0 240	P2= 3 20"	
5.8	46	Total,	Increased t	o minimum	Tc = 6.0 min	11 0.240	12 0.20	

Summary for Reach 16R: FLOW THRIOUGH NEW 18" PIPE

 Inflow Area =
 1.439 ac, 42.02% Impervious, Inflow Depth =
 3.52" for 100 year event

 Inflow =
 5.50 cfs @
 12.07 hrs, Volume=
 0.422 af

 Outflow =
 5.50 cfs @
 12.07 hrs, Volume=
 0.422 af, Atten= 0%, Lag= 0.0 min

 Routed to Reach 3269R : DIRECT FLOW TO RM
 0.422 af, Atten= 0%, Lag= 0.0 min
 0.422 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3

Summary for Reach 3269R: DIRECT FLOW TO RM

Inflow Area = 3.017 ac, 22.81% Impervious, Inflow Depth = 3.21" for 100 year event Inflow = 7.59 cfs @ 12.09 hrs, Volume= 0.807 af Outflow = 7.59 cfs @ 12.09 hrs, Volume= 0.807 af, Atten= 0%, Lag= 0.0 min Routed to Reach 3275R : TOTAL FLOW FROM WORK AREA

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3

Summary for Reach 3274R: YARD CBS TO PICKUP FLOW FROM LIFE

Inflow Area = 0.669 ac, 4.12% Impervious, Inflow Depth = 2.48" for 100 year event Inflow = 1.75 cfs @ 12.10 hrs, Volume= 0.138 af Outflow = 1.75 cfs @ 12.10 hrs, Volume= 0.138 af, Atten= 0%, Lag= 0.0 min Routed to Reach 16R : FLOW THRIOUGH NEW 18" PIPE

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3

Summary for Reach 3275R: TOTAL FLOW FROM WORK AREA

Inflow Are	a =	3.141 ac, 21.92% Impervious, Inflow Depth = 3.18" for 100 year event	
Inflow	=	7.91 cfs @ 12.09 hrs, Volume= 0.831 af	
Outflow	=	7.91 cfs @ 12.09 hrs, Volume= 0.831 af, Atten= 0%, Lag= 0.0 m	nin

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3

Summary for Pond 1R: CASCADE-SSIB#1

 Inflow Area =
 0.771 ac, 74.90% Impervious, Inflow Depth =
 5.17" for 100 year event

 Inflow =
 4.68 cfs @
 12.00 hrs, Volume=
 0.332 af

 Outflow =
 4.68 cfs @
 12.00 hrs, Volume=
 0.332 af, Atten= 0%, Lag= 0.0 min

 Primary =
 4.68 cfs @
 12.00 hrs, Volume=
 0.332 af

 Routed to Pond SSIB#1 : SSIB#1
 0.332 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 79.41' @ 12.03 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	77.23'	18.0" Round Culvert L= 8.0' Square-edged headwall, Ke= 0.500 Inlet / Outlet Invert= 77.23' / 77.20' S= 0.0038 '/' Cc= 0.900
			n= 0.010, Flow Area= 1.77 sf

Primary OutFlow Max=4.65 cfs @ 12.00 hrs HW=79.36' TW=79.07' (Dynamic Tailwater) -1=Culvert (Inlet Controls 4.65 cfs @ 2.63 fps)

KING RAIL DEVELOPED STORMWATER CALCULATIONS Type III 24-hr 100 year Rainfall=6.50" **KRAIL-DEV2** Prepared by Linden Engineering Partners, LLC HydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC

Page 100

Summary for Pond 6R: DCB#1- DMH#1

Inflow Area = 0.216 ac, 68.88% Impervious, Inflow Depth = 4.89" for 100 year event Inflow 1.17 cfs @ 12.10 hrs, Volume= = 0.088 af 1.17 cfs @ 12.10 hrs, Volume= 0.088 af, Atten= 0%, Lag= 0.0 min Outflow = Primary = 1.17 cfs @ 12.10 hrs, Volume= 0.088 af Routed to Pond 9R : DMH#1-DMH#2

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 81.56' @ 12.10 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	81.00'	12.0" Round Culvert L= 140.0' Square-edged headwall, Ke= 0.500 Inlet / Outlet Invert= 81.00' / 78.20' S= 0.0200 '/' Cc= 0.900 n= 0.010, Flow Area= 0.79 sf

Primary OutFlow Max=1.17 cfs @ 12.10 hrs HW=81.56' TW=79.85' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 1.17 cfs @ 2.56 fps)

Summary for Pond 9R: DMH#1-DMH#2

Inflow Area	=	0.466 ac, 7	'3.22% Impe	ervious,	Inflow De	epth =	5.07	" for 100) year event
Inflow =	=	2.47 cfs @	12.00 hrs,	Volume	=	0.197	af		
Outflow =	=	2.47 cfs @	12.00 hrs,	Volume	=	0.197	af, A	tten= 0%,	Lag= 0.0 min
Primary =	=	2.47 cfs @	12.00 hrs,	Volume	=	0.197	af		•
Routed to	o Pond	12R : DMH#	2-CASCADE	E					

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 80.56' @ 12.00 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	78.20'	12.0" Round Culvert L= 135.0' Square-edged headwall, Ke= 0.500 Inlet / Outlet Invert= 78.20' / 77.55' S= 0.0048 '/' Cc= 0.900 n= 0.010, Flow Area= 0.79 sf

Primary OutFlow Max=2.34 cfs @ 12.00 hrs HW=80.54' TW=79.98' (Dynamic Tailwater) -1=Culvert (Outlet Controls 2.34 cfs @ 2.98 fps)

Summary for Pond 11R: DCB#2 - DMH#1

Inflow Area = 0.249 ac, 76.99% Impervious, Inflow Depth = 5.22" for 100 year event Inflow = 1.78 cfs @ 12.00 hrs, Volume= 0.109 af Outflow = 1.78 cfs @ 12.00 hrs, Volume= 0.109 af, Atten= 0%, Lag= 0.0 min = 1.78 cfs @ 12.00 hrs, Volume= 0.109 af Primarv Routed to Pond 9R : DMH#1-DMH#2

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3

Type III 24-hr 100 year Rainfall=6.50"

KRAIL-DEV2Type IIPrepared by Linden Engineering Partners, LLCHydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC

Page 101

Peak Elev= 80.76' @ 12.01 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	78.25'	12.0" Round Culvert L= 3.0' Square-edged headwall, Ke= 0.500 Inlet / Outlet Invert= 78.25' / 78.20' S= 0.0167 '/' Cc= 0.900 n= 0.010, Flow Area= 0.79 sf

Primary OutFlow Max=1.65 cfs @ 12.00 hrs HW=80.73' TW=80.54' (Dynamic Tailwater) -1=Culvert (Inlet Controls 1.65 cfs @ 2.11 fps)

Summary for Pond 12R: DMH#2-CASCADE

 Inflow Area =
 0.771 ac, 74.90% Impervious, Inflow Depth =
 5.17" for 100 year event

 Inflow =
 4.68 cfs @
 12.00 hrs, Volume=
 0.332 af

 Outflow =
 4.68 cfs @
 12.00 hrs, Volume=
 0.332 af, Atten= 0%, Lag= 0.0 min

 Primary =
 4.68 cfs @
 12.00 hrs, Volume=
 0.332 af

 Routed to Pond 1R : CASCADE-SSIB#1
 0.332 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 79.99' @ 12.01 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	77.33'	15.0" Round Culvert L= 3.0' Square-edged headwall, Ke= 0.500 Inlet / Outlet Invert= 77.33' / 77.30' S= 0.0100 '/' Cc= 0.900 n= 0.010, Flow Area= 1.23 sf

Primary OutFlow Max=4.65 cfs @ 12.00 hrs HW=79.98' TW=79.36' (Dynamic Tailwater) -1=Culvert (Inlet Controls 4.65 cfs @ 3.79 fps)

Summary for Pond 14R: DCB#3-DMH#2

 Inflow Area =
 0.305 ac, 77.44% Impervious, Inflow Depth =
 5.33" for 100 year event

 Inflow =
 2.21 cfs @
 12.00 hrs, Volume=
 0.136 af

 Outflow =
 2.21 cfs @
 12.00 hrs, Volume=
 0.136 af, Atten= 0%, Lag= 0.0 min

 Primary =
 2.21 cfs @
 12.00 hrs, Volume=
 0.136 af

 Routed to Pond 12R : DMH#2-CASCADE
 0.136 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 80.29' @ 12.00 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	77.58'	12.0" Round Culvert L= 3.0' Square-edged headwall, Ke= 0.500 Inlet / Outlet Invert= 77.58' / 77.55' S= 0.0100 '/' Cc= 0.900 n= 0.010, Flow Area= 0.79 sf

Primary OutFlow Max=2.03 cfs @ 12.00 hrs HW=80.27' TW=79.98' (Dynamic Tailwater) -1=Culvert (Inlet Controls 2.03 cfs @ 2.58 fps)

KING RAIL DEVELOPED STORMWATER CALCULATIONS **KRAIL-DEV2** Type III 24-hr 100 year Rainfall=6.50" Prepared by Linden Engineering Partners, LLC HydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC

Page 102

Summary for Pond IB#1: NEW IB#1

Inflow Area = 1.346 ac,		1.346 ac,	0.00% Impervious, Inflow De	epth = 2.90" for 100 year event
Inflow	=	2.30 cfs @	12.10 hrs, Volume=	0.326 af
Outflow	=	1.96 cfs @	12.44 hrs, Volume=	0.313 af, Atten= 15%, Lag= 20.4 min
Primary	=	1.96 cfs @	12.44 hrs, Volume=	0.313 af
Routed	to Read	ch 3269R : D	IRECT FLOW TO RM	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 78.88' @ 12.44 hrs Surf Area= 1,928 sf Storage= 1,993 cf

Plug-Flow detention time= 59.6 min calculated for 0.313 af (96% of inflow) Center-of-Mass det. time= 36.8 min (865.8 - 828.9)

Volume	Inv	ert Avail	Storage	Storage	Description	
#1	77.	50'	2,229 cf	Custom	Stage Data (P	rismatic)Listed below (Recalc)
Elevatio (fee 77.5 78.0	et) 50	Surf.Area (sq-ft) 976 1,304		:.Store <u>c-feet)</u> 0 570	Cum.Store (cubic-feet) 0 570	
79.0	00	2,013		1,659	2,229	
Device	Routing	Inv	ert Outl	et Devices	5	
#1	Primary	78.	Inlet	/ Outlet In		L= 30.0' Ke= 0.900 '7.50' S= 0.0167 '/' Cc= 0.900 f

Primary OutFlow Max=1.96 cfs @ 12.44 hrs HW=78.88' TW=0.00' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 1.96 cfs @ 2.81 fps)

Summary for Pond IB#2: IB#2

Inflow Area =	0.073 ac, 74.45% Impervious, Inflow D	epth = 5.36" for 100 year event
Inflow =	0.40 cfs @ 12.08 hrs, Volume=	0.032 af
Outflow =	0.40 cfs @12.08 hrs, Volume=	0.032 af, Atten= 0%, Lag= 0.0 min
Primary =	0.40 cfs @ 12.08 hrs, Volume=	0.032 af
Routed to Rea	ch 3269R : DIRECT FLOW TO RM	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 77.00' @ 0.00 hrs Surf.Area= 180 sf Storage= 0 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.0 min (757.2 - 757.2)

Volume	Invert	Avail.Storage	Storage Description
#1	77.00'	630 cf	Custom Stage Data (Prismatic)Listed below (Recalc)

KING RAIL DEVELOPED STORMWATER CALCULATIONS

KRAIL-DEV2

Type III 24-hr 100 year Rainfall=6.50"

Prepared by Linden Engineering Partners, LLC HydroCAD® 10.20-3c s/n 07179 © 2023 HydroCAD Software Solutions LLC

Page 103

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
77.00	180	0	0
78.00	310	245	245
78.50	378	172	417
79.00	475	213	630

 Device
 Routing
 Invert
 Outlet Devices

 #1
 Primary
 50.00'
 30.0' long x 2.0' breadth Broad-Crested Rectangular Weir Head (feet)
 1.20
 1.40
 1.60
 1.80
 2.00

 2.50
 3.00
 3.50
 Coef. (English)
 2.54
 2.61
 2.60
 2.66
 2.70
 2.77
 2.89
 2.88

 2.85
 3.07
 3.20
 3.32
 3.32
 3.32
 3.32

Primary OutFlow Max=0.00 cfs @ 12.08 hrs HW=77.00' TW=0.00' (Dynamic Tailwater) **1=Broad-Crested Rectangular Weir** (Passes 0.00 cfs of 13,973.49 cfs potential flow)

Summary for Pond SSIB#1: SSIB#1

Inflow Area	a =	0.771 ac, 7	4.90% Impervious,	Inflow Depth = 5.17" for 100 year event
Inflow	=	4.68 cfs @	12.00 hrs, Volume	e= 0.332 af
Outflow	=	3.93 cfs @	12.05 hrs, Volume	e= 0.284 af, Atten= 16%, Lag= 2.7 min
Primary	=	3.93 cfs @	12.05 hrs, Volume	e= 0.284 af
Routed	to Read	ch 16R : FLO	N THRIOUGH NEW	/ 18" PIPE

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 79.18' @ 12.05 hrs Surf.Area= 1,652 sf Storage= 3,019 cf

Plug-Flow detention time= 110.7 min calculated for 0.284 af (85% of inflow) Center-of-Mass det. time= 47.9 min (830.7 - 782.7)

Volume	Invert	Avail.Storage	Storage Description
#1A	76.50'	1,289 cf	28.00'W x 59.00'L x 3.21'H Field A
			5,300 cf Overall - 2,077 cf Embedded = 3,224 cf x 40.0% Voids
#2A	77.00'	2,077 cf	Cultec R-280HD x 48 Inside #1
			Effective Size= 46.9"W x 26.0"H => 6.07 sf x 7.00'L = 42.5 cf
			Overall Size= 47.0"W x 26.5"H x 8.00'L with 1.00' Overlap
			Row Length Adjustment= +1.00' x 6.07 sf x 6 rows
		3,366 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	78.30'	8.0" Round Culvert X 4.00 L= 11.0' Ke= 0.900 Inlet / Outlet Invert= 78.30' / 78.19' S= 0.0100 '/' Cc= 0.900 n= 0.010. Flow Area= 0.35 sf

Primary OutFlow Max=3.93 cfs @ 12.05 hrs HW=79.18' TW=0.00' (Dynamic Tailwater) -1=Culvert (Inlet Controls 3.93 cfs @ 2.82 fps) STORMWATER REPORT KING RAIL RESERVE GOLF COURSE CLUBHOUSE 397 WALNUT STREET aka 1 KING RAIL DRIVE LYNNFIELD, MA

MADEP CHECKLIST FOR STORMWATER REPORT

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program Checklist for Stormwater Report

A. Introduction

Important: When filling out forms on the computer, use only the tab key to move your cursor - do not use the return key.

A Stormwater Report must be submitted with the Notice of Intent permit application to document compliance with the Stormwater Management Standards. The following checklist is NOT a substitute for the Stormwater Report (which should provide more substantive and detailed information) but is offered here as a tool to help the applicant organize their Stormwater Management documentation for their Report and for the reviewer to assess this information in a consistent format. As noted in the Checklist, the Stormwater Report must contain the engineering computations and supporting information set forth in Volume 3 of the Massachusetts Stormwater Handbook. The Stormwater Report must be prepared and certified by a Registered Professional Engineer (RPE) licensed in the Commonwealth.

The Stormwater Report must include:

- The Stormwater Checklist completed and stamped by a Registered Professional Engineer (see page 2) that certifies that the Stormwater Report contains all required submittals.¹ This Checklist is to be used as the cover for the completed Stormwater Report.
- Applicant/Project Name
- Project Address
- Name of Firm and Registered Professional Engineer that prepared the Report
- Long-Term Pollution Prevention Plan required by Standards 4-6
- Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan required by Standard 8²
- Operation and Maintenance Plan required by Standard 9

In addition to all plans and supporting information, the Stormwater Report must include a brief narrative describing stormwater management practices, including environmentally sensitive site design and LID techniques, along with a diagram depicting runoff through the proposed BMP treatment train. Plans are required to show existing and proposed conditions, identify all wetland resource areas, NRCS soil types, critical areas, Land Uses with Higher Potential Pollutant Loads (LUHPPL), and any areas on the site where infiltration rate is greater than 2.4 inches per hour. The Plans shall identify the drainage areas for both existing and proposed conditions at a scale that enables verification of supporting calculations.

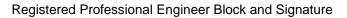
As noted in the Checklist, the Stormwater Management Report shall document compliance with each of the Stormwater Management Standards as provided in the Massachusetts Stormwater Handbook. The soils evaluation and calculations shall be done using the methodologies set forth in Volume 3 of the Massachusetts Stormwater Handbook.

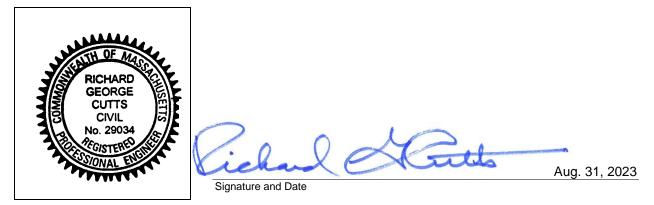
To ensure that the Stormwater Report is complete, applicants are required to fill in the Stormwater Report Checklist by checking the box to indicate that the specified information has been included in the Stormwater Report. If any of the information specified in the checklist has not been submitted, the applicant must provide an explanation. The completed Stormwater Report Checklist and Certification must be submitted with the Stormwater Report.

¹ The Stormwater Report may also include the Illicit Discharge Compliance Statement required by Standard 10. If not included in the Stormwater Report, the Illicit Discharge Compliance Statement must be submitted prior to the discharge of stormwater runoff to the post-construction best management practices.

² For some complex projects, it may not be possible to include the Construction Period Erosion and Sedimentation Control Plan in the Stormwater Report. In that event, the issuing authority has the discretion to issue an Order of Conditions that approves the project and includes a condition requiring the proponent to submit the Construction Period Erosion and Sedimentation Control Plan before commencing any land disturbance activity on the site.

B. Stormwater Checklist and Certification

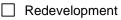

The following checklist is intended to serve as a guide for applicants as to the elements that ordinarily need to be addressed in a complete Stormwater Report. The checklist is also intended to provide conservation commissions and other reviewing authorities with a summary of the components necessary for a comprehensive Stormwater Report that addresses the ten Stormwater Standards.


Note: Because stormwater requirements vary from project to project, it is possible that a complete Stormwater Report may not include information on some of the subjects specified in the Checklist. If it is determined that a specific item does not apply to the project under review, please note that the item is not applicable (N.A.) and provide the reasons for that determination.

A complete checklist must include the Certification set forth below signed by the Registered Professional Engineer who prepared the Stormwater Report.

Registered Professional Engineer's Certification

I have reviewed the Stormwater Report, including the soil evaluation, computations, Long-term Pollution Prevention Plan, the Construction Period Erosion and Sedimentation Control Plan (if included), the Longterm Post-Construction Operation and Maintenance Plan, the Illicit Discharge Compliance Statement (if included) and the plans showing the stormwater management system, and have determined that they have been prepared in accordance with the requirements of the Stormwater Management Standards as further elaborated by the Massachusetts Stormwater Handbook. I have also determined that the information presented in the Stormwater Checklist is accurate and that the information presented in the Stormwater Report accurately reflects conditions at the site as of the date of this permit application.



Checklist

Project Type: Is the application for new development, redevelopment, or a mix of new and redevelopment?

New development

Mix of New Development and Redevelopment

LID Measures: Stormwater Standards require LID measures to be considered. Document what environmentally sensitive design and LID Techniques were considered during the planning and design of the project:

	No disturbance to any Wetland Resource Areas
	Site Design Practices (e.g. clustered development, reduced frontage setbacks)
	Reduced Impervious Area (Redevelopment Only)
	Minimizing disturbance to existing trees and shrubs
	LID Site Design Credit Requested:
	Credit 1
	Credit 2
	Credit 3
\boxtimes	Use of "country drainage" versus curb and gutter conveyance and pipe (for 600 s.f. of impervious_
	Bioretention Cells (includes Rain Gardens)
	Constructed Stormwater Wetlands (includes Gravel Wetlands designs)
	Treebox Filter
	Water Quality Swale
	Grass Channel
	Green Roof
	Other (describe):

Standard 1: No New Untreated Discharges

No new untreated discharges (Project uses recently approved outlet with reduced flow)

- Outlets have been designed so there is no erosion or scour to wetlands and waters of the Commonwealth
- Supporting calculations specified in Volume 3 of the Massachusetts Stormwater Handbook included.

Standard 2: Peak Rate Attenuation

- Standard 2 waiver requested because the project is located in land subject to coastal storm flowage and stormwater discharge is to a wetland subject to coastal flooding.
- Evaluation provided to determine whether off-site flooding increases during the 100-year 24-hour storm.

Calculations provided to show that post-development peak discharge rates do not exceed predevelopment rates for the 2-year and 10-year 24-hour storms. If evaluation shows that off-site flooding increases during the 100-year 24-hour storm, calculations are also provided to show that post-development peak discharge rates do not exceed pre-development rates for the 100-year 24hour storm.

Standard 3: Recharge

Soil Analysis provided.

- Required Recharge Volume calculation provided.
- Required Recharge volume reduced through use of the LID site Design Credits.
- Sizing the infiltration, BMPs is based on the following method: Check the method used.

\bowtie	Static
-----------	--------

Dynamic Field¹

Runoff from all impervious areas at the site discharging to the infiltration BMP.

Simple Dynamic

- Runoff from all impervious areas at the site is *not* discharging to the infiltration BMP and calculations are provided showing that the drainage area contributing runoff to the infiltration BMPs is sufficient to generate the required recharge volume.
- Recharge BMPs have been sized to infiltrate the Required Recharge Volume.
- Recharge BMPs have been sized to infiltrate the Required Recharge Volume *only* to the maximum extent practicable for the following reason:
 - Site is comprised solely of C and D soils and/or bedrock at the land surface
 - M.G.L. c. 21E sites pursuant to 310 CMR 40.0000
 - Solid Waste Landfill pursuant to 310 CMR 19.000
 - Project is otherwise subject to Stormwater Management Standards only to the maximum extent practicable.
- Calculations showing that the infiltration BMPs will drain in 72 hours are provided.
- Property includes a M.G.L. c. 21E site or a solid waste landfill and a mounding analysis is included.

¹ 80% TSS removal is required prior to discharge to infiltration BMP if Dynamic Field method is used.

Standard 3: Recharge (continued)

The infiltration BMP is used to attenuate peak flows during storms greater than or equal to the 10year 24-hour storm and separation to seasonal high groundwater is less than 4 feet and a mounding analysis is provided.

Documentation is provided showing that infiltration BMPs do not adversely impact nearby wetland resource areas.

Standard 4: Water Quality

The Long-Term Pollution Prevention Plan typically includes the following:

- Good housekeeping practices;
- Provisions for storing materials and waste products inside or under cover;
- Vehicle washing controls;
- Requirements for routine inspections and maintenance of stormwater BMPs;
- Spill prevention and response plans;
- Provisions for maintenance of lawns, gardens, and other landscaped areas;
- Requirements for storage and use of fertilizers, herbicides, and pesticides;
- Pet waste management provisions;
- Provisions for operation and management of septic systems;
- Provisions for solid waste management;
- Snow disposal and plowing plans relative to Wetland Resource Areas;
- Winter Road Salt and/or Sand Use and Storage restrictions;
- Street sweeping schedules;
- Provisions for prevention of illicit discharges to the stormwater management system;
- Documentation that Stormwater BMPs are designed to provide for shutdown and containment in the event of a spill or discharges to or near critical areas or from LUHPPL;
- Training for staff or personnel involved with implementing Long-Term Pollution Prevention Plan;
- List of Emergency contacts for implementing Long-Term Pollution Prevention Plan.
- A Long-Term Pollution Prevention Plan is attached to Stormwater Report and is included as an attachment to the Wetlands Notice of Intent.
- Treatment BMPs subject to the 44% TSS removal pretreatment requirement and the one inch rule for calculating the water quality volume are included, and discharge:
 - is within the Zone II or Interim Wellhead Protection Area
 - is near or to other critical areas
 - is within soils with a rapid infiltration rate (greater than 2.4 inches per hour)
 - involves runoff from land uses with higher potential pollutant loads.
- The Required Water Quality Volume is reduced through use of the LID site Design Credits.
- Calculations documenting that the treatment train meets the 80% TSS removal requirement and, if applicable, the 44% TSS removal pretreatment requirement, are provided.

Checklist ((continued)
-------------	-------------

Standard 4: Water Quality (continued)

- The BMP is sized (and calculations provided) based on:
 - The 1/2" or <u>1"</u> Water Quality Volume or
 - The equivalent flow rate associated with the Water Quality Volume and documentation is provided showing that the BMP treats the required water quality volume.
- The applicant proposes to use proprietary BMPs, and documentation supporting use of proprietary BMP and proposed TSS removal rate is provided. This documentation may be in the form of the propriety BMP checklist found in Volume 2, Chapter 4 of the Massachusetts Stormwater Handbook and submitting copies of the TARP Report, STEP Report, and/or other third party studies verifying performance of the proprietary BMPs.
- A TMDL exists that indicates a need to reduce pollutants other than TSS and documentation showing that the BMPs selected are consistent with the TMDL is provided.

Standard 5: Land Uses With Higher Potential Pollutant Loads (LUHPPLs)

- The NPDES Multi-Sector General Permit covers the land use and the Stormwater Pollution Prevention Plan (SWPPP) has been included with the Stormwater Report.
- The NPDES Multi-Sector General Permit covers the land use and the SWPPP will be submitted **prior to** the discharge of stormwater to the post-construction stormwater BMPs.
- The NPDES Multi-Sector General Permit does *not* cover the land use.
- LUHPPLs are located at the site and industry specific source control and pollution prevention measures have been proposed to reduce or eliminate the exposure of LUHPPLs to rain, snow, snow melt and runoff, and been included in the long term Pollution Prevention Plan.
- All exposure has been eliminated.
- All exposure has *not* been eliminated and all BMPs selected are on MassDEP LUHPPL list.
- The LUHPPL has the potential to generate runoff with moderate to higher concentrations of oil and grease (e.g. all parking lots with >1000 vehicle trips per day) and the treatment train includes an oil grit separator, a filtering bioretention area, a sand filter or equivalent.

Standard 6: Critical Areas

- The discharge is near or to a critical area and the treatment train includes only BMPs that MassDEP has approved for stormwater discharges to or near that particular class of critical area.
- Critical areas and BMPs are identified in the Stormwater Report.

Standard 7: Redevelopments and Other Projects Subject to the Standards only to the maximum extent practicable

- The project is subject to the Stormwater Management Standards only to the maximum Extent Practicable as a:
 - Limited Project
 - Small Residential Projects: 5-9 single family houses or 5-9 units in a multi-family development provided there is no discharge that may potentially affect a critical area.

Small Residential Projects: 2-4 single family houses or 2-4 units in a multi-family development with a discharge to a critical area

- Marina and/or boatyard provided the hull painting, service and maintenance areas are protected from exposure to rain, snow, snow melt and runoff
- Bike Path and/or Foot Path
- Redevelopment Project
- Redevelopment portion of mix of new and redevelopment.
- Certain standards are not fully met (Standard No. 1, 8, 9, and 10 must always be fully met) and an explanation of why these standards are not met is contained in the Stormwater Report.
- The project involves redevelopment and a description of all measures that have been taken to improve existing conditions is provided in the Stormwater Report. The redevelopment checklist found in Volume 2 Chapter 3 of the Massachusetts Stormwater Handbook may be used to document that the proposed stormwater management system (a) complies with Standards 2, 3 and the pretreatment and structural BMP requirements of Standards 4-6 to the maximum extent practicable and (b) improves existing conditions.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan must include the following information:

- Narrative;
- Construction Period Operation and Maintenance Plan;
- Names of Persons or Entity Responsible for Plan Compliance;
- Construction Period Pollution Prevention Measures;
- Erosion and Sedimentation Control Plan Drawings;
- Detail drawings and specifications for erosion control BMPs, including sizing calculations;
- Vegetation Planning;
- Site Development Plan;
- Construction Sequencing Plan;
- Sequencing of Erosion and Sedimentation Controls;
- Operation and Maintenance of Erosion and Sedimentation Controls;
- Inspection Schedule;
- Maintenance Schedule;
- Inspection and Maintenance Log Form.

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan containing the information set forth above has been included in the Stormwater Report.

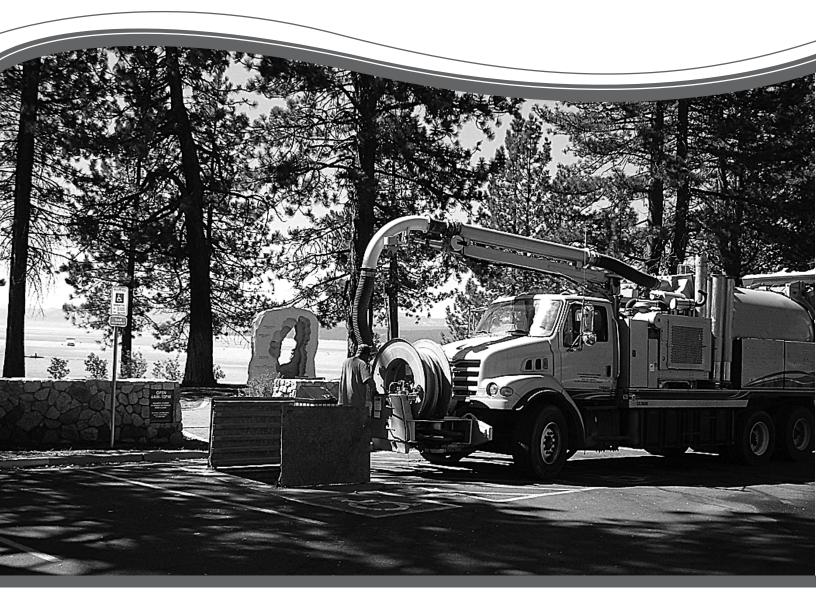
Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control (continued)

- ☐ The project is highly complex and information is included in the Stormwater Report that explains why it is not possible to submit the Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan with the application. A Construction Period Pollution Prevention and Erosion and Sedimentation Control has *not* been included in the Stormwater Report but will be submitted *before* land disturbance begins.
- The project is *not* covered by a NPDES Construction General Permit.
- The project is covered by a NPDES Construction General Permit and a copy of the SWPPP is in the Stormwater Report.
- The project is covered by a NPDES Construction General Permit but no SWPPP been submitted. The SWPPP will be submitted BEFORE land disturbance begins.

Standard 9: Operation and Maintenance Plan

- The Post Construction Operation and Maintenance Plan is included in the Stormwater Report and includes the following information:
 - Name of the stormwater management system owners;
 - Party responsible for operation and maintenance;
 - Schedule for implementation of routine and non-routine maintenance tasks;
 - Plan showing the location of all stormwater BMPs maintenance access areas;
 - Description and delineation of public safety features;
 - Estimated operation and maintenance budget; and
 - Operation and Maintenance Log Form.
- The responsible party is *not* the owner of the parcel where the BMP is located and the Stormwater Report includes the following submissions:
 - A copy of the legal instrument (deed, homeowner's association, utility trust or other legal entity) that establishes the terms of and legal responsibility for the operation and maintenance of the project site stormwater BMPs;
 - A plan and easement deed that allows site access for the legal entity to operate and maintain BMP functions.

Standard 10: Prohibition of Illicit Discharges


- The Long-Term Pollution Prevention Plan includes measures to prevent illicit discharges;
- An Illicit Discharge Compliance Statement is attached;
- NO Illicit Discharge Compliance Statement is attached but will be submitted *prior to* the discharge of any stormwater to post-construction BMPs.

STORMWATER REPORT KING RAIL RESERVE GOLF COURSE CLUBHOUSE 397 WALNUT STREET aka 1 KING RAIL DRIVE LYNNFIELD, MA

MANUFACTURER'S PERFORMANCE DATA FOR CONTECH CASCADE UNIT

Cascade Separator[®] Inspection and Maintenance Guide

Maintenance

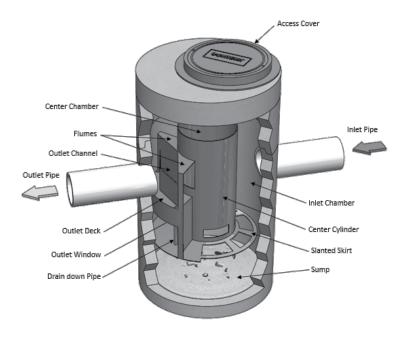
The Cascade Separator[®] system should be inspected at regular intervals and maintained when necessary to ensure optimum performance. The rate at which the system collects sediment and debris will depend upon on-site activities and site pollutant characteristics. For example, unstable soils or heavy winter sanding will cause the sediment storage sump to fill more quickly but regular sweeping of paved surfaces will slow accumulation.

Inspection

Inspection is the key to effective maintenance and is easily performed. Pollutant transport and deposition may vary from year to year and regular inspections will help ensure that the system is cleaned out at the appropriate time. At a minimum, inspections should be performed twice per year (i.e. spring and fall). However, more frequent inspections may be necessary in climates where winter sanding operations may lead to rapid accumulations, or in equipment wash-down areas. Installations should also be inspected more frequently where excessive amounts of trash are expected.

A visual inspection should ascertain that the system components are in working order and that there are no blockages or obstructions in the inlet chamber, flumes or outlet channel. The inspection should also quantify the accumulation of hydrocarbons, trash and sediment in the system. Measuring pollutant accumulation can be done with a calibrated dipstick, tape measure or other measuring instrument. If absorbent material is used for enhanced removal of hydrocarbons, the level of discoloration of the sorbent material should also be identified during inspection. It is useful and often required as part of an operating permit to keep a record of each inspection. A simple form for doing so is provided in this Inspection and Maintenance Guide.

Access to the Cascade Separator unit is typically achieved through one manhole access cover. The opening allows for inspection and cleanout of the center chamber (cylinder) and sediment storage sump, as well as inspection of the inlet chamber and slanted skirt. For large units, multiple manhole covers allow access to the chambers and sump.


The Cascade Separator system should be cleaned before the level of sediment in the sump reaches the maximum sediment depth and/or when an appreciable level of hydrocarbons and trash has accumulated. If sorbent material is used, it must be replaced when significant discoloration has occurred. Performance may be impacted when maximum sediment storage capacity is exceeded. Contech recommends maintaining the system when sediment level reaches 50% of maximum storage volume. The level of sediment is easily determined by measuring the distance from the system outlet invert (standing water level) to the top of the sediment pile. To avoid underestimating the level of sediment in the chamber, the measuring device must be lowered to the top of the sediment pile carefully. Finer, silty particles at the top of the pile typically offer less resistance to the end of the rod than larger particles toward the bottom of the pile. Once this measurement is recorded, it should be compared to the chart in this document to determine if the height of the sediment pile off the bottom of the sump floor exceeds 50% of the maximum sediment storage.

Cleaning

Cleaning of a Cascade Separator system should be done during dry weather conditions when no flow is entering the system. The use of a vacuum truck is generally the most effective and convenient method of removing pollutants from the system. Simply remove the manhole cover and insert the vacuum tube down through the center chamber and into the sump. The system should be completely drained down and the sump fully evacuated of sediment. The areas outside the center chamber and the slanted skirt should also be washed off if pollutant buildup exists in these areas.

In installations where the risk of petroleum spills is small, liquid contaminants may not accumulate as quickly as sediment. However, the system should be cleaned out immediately in the event of an oil or gasoline spill. Motor oil and other hydrocarbons that accumulate on a more routine basis should be removed when an appreciable layer has been captured. To remove these pollutants, it may be preferable to use absorbent pads since they are usually less expensive to dispose than the oil/water emulsion that may be created by vacuuming the oily layer. Trash and debris can be netted out to separate it from the other pollutants. Then the system should be power washed to ensure it is free of trash and debris.

Manhole covers should be securely seated following cleaning activities to prevent leakage of runoff into the system from above and to ensure proper safety precautions. Confined space entry procedures need to be followed if physical access is required. Disposal of all material removed from the Cascade Separator system must be done in accordance with local regulations. In many locations, disposal of evacuated sediments may be handled in the same manner as disposal of sediments removed from catch basins or deep sump manholes. Check your local regulations for specific requirements on disposal. If any components are damaged, replacement parts can be ordered from the manufacturer.

Cascade Separator[®] Maintenance Indicators and Sediment Storage Capacities

Model	Diameter		Distance from Water Surface to Top of Sediment Pile		Sediment Storage Capacity	
Number	ft	m	ft	m	У³	m³
CS-3	3	0.9	1.5	0.5	0.4	0.3
CS-4	4	1.2	2.5	0.8	0.7	0.5
CS-5	5	1.3	3	0.9	1.1	0.8
CS-6	6	1.8	3.5	1	1.6	1.2
CS-8	8	2.4	4.8	1.4	2.8	2.1
CS-10	10	3.0	6.2	1.9	4.4	3.3
CS-12	12	3.6	7.5	2.3	6.3	4.8

Note: The information in the chart is for standard units. Units may have been designed with non-standard sediment storage depth.

A Cascade Separator unit can be easily cleaned in less than 30 minutes.

A vacuum truck excavates pollutants from the systems.

Cascade Separator [®] Inspection & Maintenance Log					
Cascade Model:			Location:		
Date	Depth Below Invert to Top of Sediment ¹	Floatable Layer Thickness ²	Describe Maintenance Performed	Maintenance Personnel	Comments

1. The depth to sediment is determined by taking a measurement from the manhole outlet invert (standing water level) to the top of the sediment pile. Once this measurement is recorded, it should be compared to the chart in the maintenance guide to determine if the height of the sediment pile off the bottom of the sump floor exceeds 50% of the maximum sediment storage. Note: to avoid underestimating the volume of sediment in the chamber, the measuring device must be carefully lowered to the top of the sediment pile.

2. For optimum performance, the system should be cleaned out when the floating hydrocarbon layer accumulates to an appreciable thickness. In the event of an oil spill, the system should be cleaned immediately.

SUPPORT

• Drawings and specifications are available at www.ContechES.com.

• Site-specific design support is available from our engineers.

©2021 Contech Engineered Solutions LLC, a QUIKRETE Company

Contech Engineered Solutions LLC provides site solutions for the civil engineering industry. Contech's portfolio includes bridges, drainage, sanitary sewer, stormwater, and earth stabilization products. For information, visit www.ContechES.com or call 800.338.1122

NOTHING IN THIS CATALOG SHOULD BE CONSTRUED AS A WARRANTY. APPLICATIONS SUGGESTED HEREIN ARE DESCRIBED ONLY TO HELP READERS MAKE THEIR OWN EVALUATIONS AND DECISIONS, AND ARE NEITHER GUARANTEES NOR WARRANTIES OF SUITABILITY FOR ANY APPLICATION. CONTECH MAKES NO WARRANTY WHATSOEVER, EXPRESS OR IMPLIED, RELATED TO THE APPLICATIONS, MATERIALS, COATINGS, OR PRODUCTS DISCUSSED HEREIN. ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND ALL IMPLIED WARRANTIES OF FITNESS FOR ANY PARTICULAR PURPOSE ARE DISCLAIMED BY CONTECH. SEE CONTECH'S CONDITIONS OF SALE (AVAILABLE AT WWW.CONTECHES.COM/COS) FOR MORE INFORMATION.